Mycopathologia

, Volume 168, Issue 5, pp 257–268 | Cite as

Survey of Vietnamese Peanuts, Corn and Soil for the Presence of Aspergillus flavus and Aspergillus parasiticus

Original Paper

Abstract

Aspergillus flavus and Aspergillus parasiticus cause perennial infection of agriculturally important crops in tropical and subtropical areas. Invasion of crops by these fungi may result in contamination of food and feed by potent carcinogenic aflatoxins. Consumption of aflatoxin contaminated foods is a recognised risk factor for human hepatocellular carcinoma (HCC) and may contribute to the high incidence of HCC in Southeast Asia. This study conducted a survey of Vietnamese crops (peanuts and corn) and soil for the presence of aflatoxigenic fungi and used microsatellite markers to investigate the genetic diversity of Vietnamese Aspergillus strains. From a total of 85 samples comprising peanut (25), corn (45) and soil (15), 106 strains were isolated. Identification of strains by colony morphology and aflatoxin production found all Vietnamese strains to be A. flavus with no A. parasiticus isolated. A. flavus was present in 36.0% of peanut samples, 31.1% of corn samples, 27.3% of farmed soil samples and was not found in virgin soil samples. Twenty-five per cent of the strains produced aflatoxins. Microsatellite analysis revealed a high level of genetic diversity in the Vietnamese A. flavus population. Clustering, based on microsatellite genotype, was unrelated to aflatoxin production, geographic origin or substrate origin.

Keywords

Peanuts Corn Soil Microsatellite markers Genetic diversity 

References

  1. 1.
    USDA Foreign Agricultural Service. World Agricultural Production. 2008. http://www.fas.usda.gov/.
  2. 2.
    Cotty PJ, Bayman P, Egel DS, Elias KS. Agriculture, aflatoxins and Aspergillus. In: Powell KA, Renwick A, Peberdy JF, editors. The genus Aspergillus: from taxonomy and genetics to industrial applications. New York: Plenum Press; 1994. p. 1–27.Google Scholar
  3. 3.
    Horn BW, Dorner JW. Soil populations of Aspergillus species from section Flavi along a transect through peanut-growing regions of the United States. Mycologia. 1998;90:767–76. doi:10.2307/3761317.CrossRefGoogle Scholar
  4. 4.
    Pitt JI, Hocking AD. Fungi and food spoilage. 2nd ed. Gaithersburg: Aspen; 1997. p. 375–97.Google Scholar
  5. 5.
    Wicklow DT, Horn BW, Shotwell OL, Hesseltine CW, Caldwell RW. Fungal interference with Aspergillus flavus infection and aflatoxin contamination of maize grown in a controlled environment. Phytopathol. 1988;78:68–74. doi:10.1094/Phyto-78-68.CrossRefGoogle Scholar
  6. 6.
    Wogan GN. Aflatoxins as risk factors for hepatocellular carcinoma in humans. Cancer Res. 1992;52:S2114–8.Google Scholar
  7. 7.
    Saracco G. Primary liver-cancer is of multifactorial origin—importance of hepatitis-B virus-infection and dietary aflatoxin. J Gastroenterol Hepatol. 1995;10:604–8. doi:10.1111/j.1440-1746.1995.tb01354.x.CrossRefPubMedGoogle Scholar
  8. 8.
    Turner PC, Sylla A, Diallo MS, Castegnaro JJ, Hall AJ, Wild CP. The role of aflatoxins and hepatitis viruses in the etiopathogenesis of hepatocellular carcinoma: a basis for primary prevention in Guinea-Conakry, West Africa. J Gastroenterol Hepatol. 2002;17:S441–8. doi:10.1046/j.1440-1746.17.s4.7.x.CrossRefPubMedGoogle Scholar
  9. 9.
    Parkin DM, Pisani P, Ferleay J. Estimates of the worldwide incidence of 25 major cancers in 1990. Int J Cancer. 1999;80:827–41. doi:10.1002/(SICI)1097-0215(19990315)80:6<827::AID-IJC6>3.0.CO;2-P.CrossRefPubMedGoogle Scholar
  10. 10.
    Montalto G, Cervello M, Giannitrapani L, Dantona F, Terranova A, Castagnetta LAM. Epidemiology, risk factors, and natural history of hepatocellular carcinoma. Ann NY Acad Sci. 2002;963:13–20.PubMedCrossRefGoogle Scholar
  11. 11.
    Lee N, Hill AS, Bui VT, Tran VA, Le VT, Kennedy IR. Monitoring mycotoxins and pesticides in grain and food production systems for risk management in Vietnam and Australia. In: Johnson GI, Le VT, Nguyen DD, Webb MC, editors. Quality assurance in agricultural produce. Canberra: ACIAR Proceedings 100; 2000. p. 496–500.Google Scholar
  12. 12.
    Cotty P. Strategies to reduce aflatoxin contamination. Phytopathology. 2008;98:S182–3. doi:10.1094/PHYTO.2008.98.6.S182.CrossRefGoogle Scholar
  13. 13.
    Pitt JI, Hocking AD. Mycotoxins in Australia: biocontrol of aflatoxin in peanuts. Mycopathologia. 2006;162:233–43. doi:10.1007/s11046-006-0059-0.CrossRefPubMedGoogle Scholar
  14. 14.
    Yin YN, Yan LY, Jian JH, Ma ZH. Biological control of aflatoxin contamination of crops. J Zhejian Univ Sci B. 2008;9:787–92. doi:10.1631/jzus.B0860003.CrossRefGoogle Scholar
  15. 15.
    Shank RC, Wogan GN, Gibson JB. Dietary aflatoxins and human liver cancer. I. Toxigenic moulds in foods and foodstuffs of tropical South-East Asia. Food Cosmet Toxicol. 1972;10:51–60. doi:10.1016/S0015-6264(72)80046-4.CrossRefGoogle Scholar
  16. 16.
    Siriacha P, Kawashima K, Kawasugi S, Saito M, Tonboon-Ek P. Postharvest contamination of Thai corn with Aspergillus flavus. Cereal Chem. 1989;66:445–8.Google Scholar
  17. 17.
    Pitt JI, Hocking AD, Bhudhasamai K, Miscamble BF, Wheeler KA, Tanboonek P. The normal mycoflora of commodities from Thailand 1. Nuts and oilseeds. Int J Food Microbiol. 1993;20:211–26. doi:10.1016/0168-1605(93)90166-E.CrossRefPubMedGoogle Scholar
  18. 18.
    Pitt JI, Hocking AD, Bhudhasamai K, Miscamble BF, Wheeler KA, Tanboonek P. The normal mycoflora of commodities from Thailand 2. Beans, rice, small grains and other commodities. Int J Food Microbiol. 1994;23:35–53. doi:10.1016/0168-1605(94)90220-8.CrossRefPubMedGoogle Scholar
  19. 19.
    Kumeda Y, Asao T, Takahashi H, Ichinoe M. High prevalence of B and G aflatoxin-producing fungi in sugarcane field soil in Japan: heteroduplex panel analysis identifies a new genotype within Aspergillus Section Flavi and Aspergillus nomius. FEMS Microbiol Ecol. 2003;45:229–38. doi:10.1016/S0168-6496(03)00154-5.CrossRefPubMedGoogle Scholar
  20. 20.
    Pitt JI, Hocking AD, Glenn DR. An improved medium for the detection of Aspergillus flavus and A. parasiticus. J Appl Bacteriol. 1983;54:109–14.PubMedGoogle Scholar
  21. 21.
    Klich MA, Pitt JI. A laboratory guide to the common Aspergillus species and their teleomorphs. Sydney: Commonwealth Scientific and Industrial Research Organisation, Division of Food Processing; 1988.Google Scholar
  22. 22.
    Dyer SK, McCammon S. Detection of toxigenic isolates of Aspergillus flavus and related species on coconut cream agar. J Appl Bacteriol. 1994;76:75–8.PubMedGoogle Scholar
  23. 23.
    Tran-Dinh N, Pitt JI, Carter DA. Molecular genotype analysis of natural toxigenic, nontoxigenic isolates of Aspergillus flavus, A. parasiticus. Mycol Res. 1999;103:1485–90. doi:10.1017/S0953756299008710.CrossRefGoogle Scholar
  24. 24.
    Tran-Dinh N, Carter DA. Characterisation of microsatellite loci in the aflatoxigenic fungi Aspergillus flavus and Aspergillus parasiticus. Mol Ecol. 2000;9:2170–2. doi:10.1046/j.1365-294X.2000.10539.x.CrossRefPubMedGoogle Scholar
  25. 25.
    Minch E. MICROSAT version 1.4. Stanford: Stanford University Medical Center; 1996.Google Scholar
  26. 26.
    Saitou N, Nei M. The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25.PubMedGoogle Scholar
  27. 27.
    Fisher MC, Koenig GL, White TJ, Taylor JW. Pathogenic clones versus environmentally driven population increase: analysis of an epidemic of the human fungal pathogen Coccidioides immitis. J Clin Microbiol. 2000;38:807–13.PubMedGoogle Scholar
  28. 28.
    Ilic Z, Bui T, Tran-Dinh N, Dang MHV, Kennedy I, Carter D. Survey of Vietnamese coffee beans for the presence of ochratoxigenic Aspergilli. Mycopathologia. 2007;163:177–82. doi:10.1007/s11046-007-0099-0.CrossRefPubMedGoogle Scholar
  29. 29.
    Ehrlich KC, Kobbeman K, Montalban BG, Cotty PJ. Aflatoxin-producing Aspergillus species from Thailand. Int J Food Microbiol. 2007;114:153–9. doi:10.1016/j.ijfoodmicro.2006.08.007.CrossRefPubMedGoogle Scholar
  30. 30.
    Gao J, Liu Z, Yu J. Identification of Aspergillus section Flavi in maize in northeastern China. Mycopathologia. 2007;164:91–5. doi:10.1007/s11046-007-9029-4.CrossRefPubMedGoogle Scholar
  31. 31.
    Takahashi H, Kamimua H, Ichinoe M. Distribution of aflatoxin-producing Aspergillus flavus and Aspergillus parasiticus in sugarcane fields in the southernmost islands of Japan. J Food Prot. 2004;67:90–5.PubMedGoogle Scholar
  32. 32.
    Sales AC, Yoshizawa T. Mold counts and Aspergillus section Flavi populations in rice and its by-products from the Philippines. J Food Prot. 2005;61:120–5.Google Scholar
  33. 33.
    Christensen M. A synoptic key and evaluation of species in the Aspergillus flavus group. Mycologia. 1981;73:1056–84. doi:10.2307/3759676.CrossRefGoogle Scholar
  34. 34.
    Diener UL, Cole RJ, Sanders TH, Payne GA, Lee LS, Klich MA. Epidemiology of aflatoxin formation by Aspergillus flavus. Annu Rev Phytopathol. 1987;25:249–70.Google Scholar
  35. 35.
    Domsch KH, Gams W, Anderson TH. Compendium of soil fungi. London: Academic Press; 1980. p. 90–4.Google Scholar
  36. 36.
    Klich MA, Pitt JI. Differentiation of Aspergillus flavus from Aspergillus parasiticus and other closely related species. Trans Br Mycol Soc. 1988;91:99–108.CrossRefGoogle Scholar
  37. 37.
    Viquez OM, Castellperez ME, Shelby RA, Brown G. Aflatoxin contamination in corn samples due to environmental conditions, aflatoxin-producing strains, and nutrients in grain grown in Costa Rica. J Agric Food Chem. 1994;42:2551–5. doi:10.1021/jf00047a033.CrossRefGoogle Scholar
  38. 38.
    Barry D, Widstrom NW, Darrah LL, McMillan WW, Riley TJ, Scott GE, et al. Maize ear damage by insects in relation to genotype and aflatoxin contamination in preharvest maize grain. J Econ Entomol. 1992;85:2492–5.Google Scholar
  39. 39.
    Jones RK, Duncan HE. Effect of nitrogen fertiliser, planting date, and harvest date on aflatoxin production in corn inoculated with Aspergillus flavus. Plant Dis. 1981;65:741–4.Google Scholar
  40. 40.
    Setamou M, Cardwell KF, Schulthes F, Hell K. Aspergillus flavus infection and aflatoxin contamination of preharvest maize in Benin. Plant Dis. 1997;81:1323–7. doi:10.1094/PDIS.1997.81.11.1323.CrossRefGoogle Scholar
  41. 41.
    Shearer JF, Sweets LE, Baker NK, Tiffany LH. A study of Aspergillus flavus/Aspergillus parasiticus in Iowa crop fields, 1989–1990. Plant Dis. 1992;76:19–22.Google Scholar
  42. 42.
    Davis ND, Diener UL. Biology of A. flavus and A. parasiticus, some characteristics of toxigenic and nontoxigenic isolates of Aspergillus flavus and Aspergillus parasiticus. In: Diener UL, Asuith RL, Dikens JW, editors. Aflatoxin and Aspergillus flavus in Corn. Auburn: Auburn University; 1983. p. 1–5.Google Scholar
  43. 43.
    Schroeder HW, Boller RA. Aflatoxin production of species and strains of the Aspergillus flavus group isolated from field crops. Appl Microbiol. 1973;25:885–9.PubMedGoogle Scholar
  44. 44.
    Geiser DM, Pitt JI, Taylor JW. Cryptic speciation and recombination in the aflatoxin-producing fungus Aspergillus flavus. Proc Natl Acad Sci USA. 1998;95:388–93. doi:10.1073/pnas.95.1.388.CrossRefPubMedGoogle Scholar
  45. 45.
    O’Gorman CM, Fuller HT, Dyer PS. Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus. Nature advance online publication 30 November 2008 (DOI 10.1038/nature07528).
  46. 46.
    Rodriguez-del-Bosque LA. Impact of agronomic factors on aflatoxin contamination in preharvest field corn in Northeastern Mexico. Plant Dis. 1996;80:988–93.Google Scholar
  47. 47.
    Rustom IYS. Aflatoxin in food and feed: occurrence, legislation and inactivation by physical methods. Food Chem. 1997;59:57–67. doi:10.1016/S0308-8146(96)00096-9.CrossRefGoogle Scholar
  48. 48.
    FAO/WHO. Forty-ninth report of the joint FAP/WHO expert committee of food additives: evaluation of certain food additives and contaminants. Who Tech Rep Ser. 1999;884:69–77.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  1. 1.School of Molecular and Microbial BiosciencesThe University of SydneySydneyAustralia
  2. 2.Department of Agricultural Chemistry and Soil ScienceThe University of SydneySydneyAustralia
  3. 3.CSIRO Food and Nutritional SciencesNorth Ryde, SydneyAustralia

Personalised recommendations