Mycopathologia

, 167:229 | Cite as

Fungal Infection of Mantis Shrimp (Oratosquilla oratoria) Caused by Two Anamorphic Fungi Found in Japan

  • Pham Minh Duc
  • Kishio Hatai
  • Osamu Kurata
  • Kozue Tensha
  • Uchida Yoshitaka
  • Takashi Yaguchi
  • Shun-Ichi Udagawa
Article

Abstract

Two fungal pathogens of the mantis shrimp (Oratosquilla oratoria) in Yamaguchi and Aichi Prefectures, Japan are described as the new species Plectosporium oratosquillae and Acremonium sp. (a member of the Emericellopsis marine clade). Both fungi infect the gills of the mantis shrimp, which become brown or black due to melanization. The former species is characterized by its slow growth on artificial seawater yeast extract peptone glucose (PYGS) agar, pale yellow to pale orange or grayish yellow colonies, short cylindrical solitary phialides with a wavy tip, and one-celled ellipsoidal conidia. Although lacking the two-celled conidia demonstrated by the type species Plectosporium tabacinum, the taxonomic placement of the new species was confirmed by DNA sequence analysis of the internal transcribed spacer (ITS) region of ribosomal DNA (ITS1, 5.8S rDNA and ITS2). Acremonium sp., the other causal pathogen, differs from P. oratosquillae by its fast growth on PYGS agar, pale orange to salmon-colored colonies, long, slender conidiophores consisting of solitary phialides with tips lacking an undulate outline, and typically cylindrical conidia. Analysis of ITS and β-tubulin gene sequences placed this fungus within the phylogenetically distinct Emericellopsis (anam. Acremonium) marine clade. Various physiological characteristics of both pathogens were also investigated. This is the first report of a fungal infection found on the mantis shrimp in Japan.

Keywords

Acremonium sp. Fungal infection Mantis shrimp Oratosquilla oratoria Plectosporium oratosquillae 

Notes

Acknowledgments

Pham Minh Duc would like to thank the Vietnamese government through “Project 322” for financial support and the opportunity for his PhD thesis study in Japan.

References

  1. 1.
    Kodama K, Aoki I, Shimizu M. Long-term changes in the assemblage of demersal fishes and invertebrates in relation to environmental variations in Tokyo Bay. Jpn Fish Manag Ecol. 2002;9:303–13. doi: 10.1046/j.1365-2400.2002.00313.x.CrossRefGoogle Scholar
  2. 2.
    Kodama K, Shimizu T, Aoki I. Possible factors causing the fluctuation of the recruitment of Japanese mantis shrimp Oratosquilla oratoria in Tokyo Bay. Bull Kanagawa Prefect Fish Res Inst. 2003;8:71–6 (in Japanese).Google Scholar
  3. 3.
    Ishikawa Y. A fungus caused black gill condition in cultured kuruma prawn. Fish Pathol. 1968;3:34–49 (in Japanese).Google Scholar
  4. 4.
    Egusa S, Ueda T. A Fusarium sp. associated with black gill diseases of the kuruma prawn, Penaeus japonicus Bate. Bull Jpn Soc Sci Fish. 1972;38:1253–60.Google Scholar
  5. 5.
    Hatai K, Egusa S. Studies on the pathogenic fungus associated with black gill disease of kuruma prawn, Penaeus japonicus II: some of the note on the BG-Fusarium. Fish Pathol. 1978;12:225–31 (in Japanese).Google Scholar
  6. 6.
    Momoyama K. Distribution of the hyphae in kuruma prawn, Penaeus japonicus infected with Fusarium solani. Fish Pathol. 1987;22:15–23 (in Japanese).Google Scholar
  7. 7.
    Khoa LV, Hatai K, Yuasa A, Sawada K. Morphology and molecular phylogeny of Fusarium solani isolated from kuruma prawn, Penaeus japonicus with black gills. Fish Pathol. 2005;40:103–9.Google Scholar
  8. 8.
    Lightner DV, Fontaine CT. A mycosis of the American lobster Homarus americanus caused by Fusarium sp. J Invertebr. 1975;25:239–45. doi: 10.1016/0022-2011(75)90074-9.CrossRefGoogle Scholar
  9. 9.
    Khoa LV, Hatai K, Aoki T. Fusarium incarnatum isolated from black tiger shrimp, Penaeus monodon Fabricius, with black gill disease cultured in Vietnam. J Fish Dis. 2004;27:507–15. doi: 10.1111/j.1365-2761.2004.00562.x.PubMedCrossRefGoogle Scholar
  10. 10.
    Alderman DJ, Polglase JL. Fusarium tabacinum (Beyma) Gams as a gill parasite in the crayfish, Austropotamobius pallipes Lereboullet. J Fish Dis. 1985;8:249–52. doi: 10.1111/j.1365-2761.1985.tb01222.x.CrossRefGoogle Scholar
  11. 11.
    Hatai K, Kubota S, Kida N, Udagawa S. Fusarium oxysporum in red sea beam, Pagrus sp. J Wildlife Dis. 1986;22:570–1.Google Scholar
  12. 12.
    Hatai K, Fujimaki Y, Egusa S. A visceral mycosis in ayu fry, Plecoglossus altivelis Temminck & Schlegel, caused by a species of Phoma. J Fish Dis. 1986;9:111–6. doi: 10.1111/j.1365-2761.1986.tb00989.x.CrossRefGoogle Scholar
  13. 13.
    Munchan C, Kurata O, Hatai K, Hashiba N, Nakaoka N, Kawakami H. Mass mortality of young striped jack, Pseudocaranx dentex caused by a fungus Ochroconis humicola. Fish Pathol. 2006;41:179–82. doi: 10.3147/jsfp.41.179.CrossRefGoogle Scholar
  14. 14.
    Ho WC, Ko WH. A simple method for obtaining single-spore isolates of fungi. Bot Bull Acad Sin. 1997;38:41–4.Google Scholar
  15. 15.
    Kornerup A, Wanscher JH. Methuen handbook of colour. 2nd ed. London: Eyre Methuen; 1978.Google Scholar
  16. 16.
    White TJ, Bruns TD, Lee SB, Taylor JW. Amplification and direct sequencing of fungal ribosomal DNA for phylogenetics. In: Innis MA, Gelfan DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to the methods and application. San Diego: Academic Press; 1990. p. 315–22.Google Scholar
  17. 17.
    Glass NL. Donaldson GC: development of primer sets designed for use with the PCR to amplify genes from filamentous ascomycetes. Appl Environ Microbiol. 1995;61:1323–30.PubMedGoogle Scholar
  18. 18.
    Thompson JD, Gibson TJ, Plewniak , Jeanmpugin F, Higgins DG. The clustal X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;24:4876–82. doi: 10.1093/nar/25.24.4876.CrossRefGoogle Scholar
  19. 19.
    Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25.PubMedGoogle Scholar
  20. 20.
    Kimura M. A simple method for estimation evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16:111–20. doi: 10.1007/BF01731581.PubMedCrossRefGoogle Scholar
  21. 21.
    Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39:783–91. doi: 10.2307/2408678.CrossRefGoogle Scholar
  22. 22.
    Kim YK, Xiao CL, Rogers JD. Influence of culture media and environmental factors on mycelial growth and pycnidial production of Sphaeropsis pyriputrescens. Mycologia. 2005;97:25–32. doi: 10.3852/mycologia.97.1.25.PubMedCrossRefGoogle Scholar
  23. 23.
    Ash GJ, Chung YR, Mckenzie C, Cother EJ. A phylogenetic and pathogenic comparison of potential biocontrol agents for weeds in the family Alismataceae from Australia and Korea. Aust Plant Pathol. 2008;37:402–5. doi: 10.1071/AP08023.CrossRefGoogle Scholar
  24. 24.
    Wang G, Li Q, Zhu P. Phylogenetic diversity of cultureable fungi associated with the Hawaiian Sponges Suberites zeteki and Gelliodes fibrosa. Antonie Van Leeuwenhoek. 2008;93:163–74. doi: 10.1007/s10482-007-9190-2.PubMedCrossRefGoogle Scholar
  25. 25.
    Zare R, Gams W, Starink-Willemse M, Summerbell RC. Gibellulopsis, a suitable genus for Verticillium nigrescens, and Musicillium, a new genus for V. theobromae. Nova Hedwig. 2007;85:463–89. doi: 10.1127/0029-5035/2007/0085-0463.CrossRefGoogle Scholar
  26. 26.
    Pitt WM, Goodwin SB, Ash GJ, Cother NJ, Cother EJ. Plectosporium alismatis comb. nov. a new placement for the Alismataceae pathogen Rhynchosporium alismatis. Mycol Res. 2004;108:775–80. doi: 10.1017/S0953756204000541.PubMedCrossRefGoogle Scholar
  27. 27.
    Zuccaro A, Summerbell RC, Gams W, Schroers H-J. Mitchell JI. A new Acremonium species associated with Fucus spp., and it affinity with a phylogenetically distinct marine Emericellopsis clade. Stud Mycol. 2004;50:283–97.Google Scholar
  28. 28.
    Pitt WM, Gams W. A redescription of Plectosporium alismatis (hyphomycetes with glomerellaceous affinities). Nova Hedwig. 2005;81:311–23. doi: 10.1127/0029-5035/2005/0081-0311.CrossRefGoogle Scholar
  29. 29.
    Antignani V, Gams W, Marziano F. Plectosporium delsorboi n. sp., a pathogen of Curcuma, Zingiberaceae. Nova Hedwig. 2008;86:209–14. doi: 10.1127/0029-5035/2008/0086-0209.CrossRefGoogle Scholar
  30. 30.
    Bian BZ, Egusa S. Histopathology of black gill disease caused by Fusarium solani (Martius) infection in the kuruma prawn, Penaeus japonicus Bate. J Fish Dis. 1981;4:195–201. doi: 10.1111/j.1365-2761.1981.tb01126.x.CrossRefGoogle Scholar
  31. 31.
    Khoa LV, Hatai K. First case of Fusarium oxysporum infection in culture kuruma prawn, Penaeus japonicus in Japan. Fish Pathol. 2005;40:195–6.Google Scholar
  32. 32.
    Zuccaro A, Schulz B, Mitchell JI. Molecular detection of ascomycetes associated with Fucus serratus. Mycol Res. 2003;107:1451–66. doi: 10.1017/S0953756203008657.PubMedCrossRefGoogle Scholar
  33. 33.
    Palm ME, Gams W, Nirenberg HI. Plectosporium, a new genus for Fusarium tabacinum, the anamorph of Plectosphaerella cucumerina. Mycologia. 1995;87:397–406. doi: 10.2307/3760837.CrossRefGoogle Scholar
  34. 34.
    Domsch KH, Gams W, Anderson T-H. Compendium of soil fungi. 2nd ed. Eching: IHW Verlag; 2007.Google Scholar
  35. 35.
    Smith-Kopperl ML, Charudattan R, Berher RD. Plectosporium tabacinum, a pathogen of the invasive aquatic weed Hydrilla verticillata in Florida. Plant Dis. 1999;83:24–8. doi: 10.1094/PDIS.1999.83.1.24.CrossRefGoogle Scholar
  36. 36.
    Tubaki K, Ito T. Descriptive catalogue of IFO fungus collection IV. IFO Res Commun. 1975;7:113–42.Google Scholar
  37. 37.
    Sato T, Inaba T, Mori M, Watanabe K, Tomioka K, Hamaya E. Plectosporium blight of pumpkin and ranunculus caused by Plectosporium tabacinum. J Gen Plant Pathol. 2005;71:127–32. doi: 10.1007/s10327-004-0173-0.CrossRefGoogle Scholar
  38. 38.
    Sato T, Takeuchi J, Nagao H, Tomioka K. Studies on phytopathological, morphological and molecular variations. In: Kurisaki J et al, editors. Genetic and functional diversity of agriculture microorganisms. Proceedings on 12th NIAS Int Workshop Genetic Resources. Tsukuba, Japan: Nat Inst Agrobiol Sci; 2005b. p. 113–4.Google Scholar
  39. 39.
    Gams W. Cephalosporium-artige Schimmelpilze (Hyphomycetes). Stuttgart, Germany:G. Fischer; 1971.Google Scholar
  40. 40.
    Gams W. Cephalosporium-like Hyphomycetes. Sugadaira, Japan: Hyphomycete course, Mycol Soc Jpn; 1997.Google Scholar
  41. 41.
    Tubaki K. Aquatic sediment as a habitat of Emericellopsis, with a description of an undescribed species of Cephalosporium. Mycologia. 1973;65:938–41. doi: 10.2307/3758530.CrossRefGoogle Scholar
  42. 42.
    Stolk AC. Emericellopsis minima sp.nov. and Westerdykella ornata gen.nov., sp.nov. Trans Br Mycol Soc. 1955;38:419.Google Scholar
  43. 43.
    Jones EBG, Jennings DH. The effect of salinity on the growth of marine fungi in comparison with non-marine species. Trans Br Mycol Soc. 1964;47:619–25.Google Scholar
  44. 44.
    Jones EBG. Marine fungi: some factors influencing biodiversity. Fungal Divers. 2000;4:53–73.Google Scholar
  45. 45.
    Byrne P, Jones EBG. Effect of salinity on spore germination of terrestrial and marine fungi. Trans Br Mycol Soc. 1975;64:497–503.CrossRefGoogle Scholar
  46. 46.
    Byrne PJ, Jones EBG. Effect of salinity on the reproduction of terrestrial and marine fungi. Trans Br Mycol Soc. 1975;65:185–200.Google Scholar
  47. 47.
    Boyd PE, Kohlmeyer J. The influence of temperature on the seasonal and geographic distribution of three marine fungi. Mycologia. 1982;74:894–902. doi: 10.2307/3792718.CrossRefGoogle Scholar
  48. 48.
    Kodama K, Shiraishi H, Morita M, Horiguchi T. Verification of lipofuscin-based crustacean ageing: seasonality of lipofuscin accumulation in the stomatopod Oratosquilla oratoria in relation to water temperature. Mar Biol. 2006;150:131–40. doi: 10.1007/s00227-006-0337-x.CrossRefGoogle Scholar
  49. 49.
    Tubaki K, Ito T. Fungi inhabiting in brackish water. Rep Tottori Mycol Inst. 1973;10:523–39.Google Scholar
  50. 50.
    Nagai K, Sakai T, Rantiatmodjo RM, Suzuki K, Gams W, Okada G. Studies on the distribution of alkalophilic and alkali-tolerant soil fungi I. Mycoscience. 1995;36:247–56. doi: 10.1007/BF02268598.CrossRefGoogle Scholar
  51. 51.
    Zhang W, Sulz M, Bailey KL. Growth and spore production of Plectosporium tabacinum. Can J Bol. 2001;79:1297–306. doi: 10.1139/cjb-79-11-1297.CrossRefGoogle Scholar
  52. 52.
    Bliss DE, Provenzano AJ Jr. Pathobiology. In: The biology of crustacea. Vol. 6. Academic Press; 1983.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Pham Minh Duc
    • 1
    • 2
  • Kishio Hatai
    • 1
  • Osamu Kurata
    • 1
  • Kozue Tensha
    • 3
  • Uchida Yoshitaka
    • 3
  • Takashi Yaguchi
    • 4
  • Shun-Ichi Udagawa
    • 5
  1. 1.Laboratory of Fish DiseasesNippon Veterinary and Life Science UniversityTokyoJapan
  2. 2.College of Aquaculture and FisheriesCantho UniversityCanthoVietnam
  3. 3.Yamaguchi Prefectural Fisheries Research Center Inland Sea DivisionAio-FutoshimaJapan
  4. 4.Medical Mycology Research CenterChiba UniversityChibaJapan
  5. 5.Tama LaboratoryJapan Food Research LaboratoriesTokyoJapan

Personalised recommendations