, 167:9 | Cite as

Monitoring ALS1 and ALS3 Gene Expression During In Vitro Candida albicans Biofilm Formation Under Continuous Flow Conditions

  • Heleen Nailis
  • Roosmarijn Vandenbroucke
  • Kelly Tilleman
  • Dieter Deforce
  • Hans Nelis
  • Tom CoenyeEmail author


ALS1 and ALS3 encode cell-surface associated glycoproteins that are considered to be important for Candida albicans biofilm formation. The main goal of the present study was to monitor ALS1 and ALS3 gene expression during C. albicans biofilm formation (on silicone) under continuous flow conditions, using the Centers for Disease Control biofilm reactor (CDC reactor). For ALS1, we found few changes in gene expression until later stages of biofilm formation (72 and 96 h) when this gene appeared to be downregulated relative to the gene expression level in the start culture. We observed an induction of ALS3 gene expression in the initial stages of biofilm formation (0.5, 1, and 6 h), whereas at later stages, this gene was also downregulated relative to the gene expression level in the start culture. We also found that biofilms of an als3/als3 deletion mutant contained less filaments at several time points (1, 6, 24, and 48 h), although filamentation as such was not affected in this strain. Together, our data indicate an important role for ALS3 in the early phases of biofilm formation in the CDC reactor, probably related to adhesion of filaments, while the role of ALS1 is less clear.


Candida albicans Biofilms ALS1 ALS3 Gene expression Filamentation 



We wish to thank Aaron Mitchell and Alistair Brown for providing strains and acknowledge Andrea Cochis, Hanne Thuysbaert, Sofie Vandevivere and Kim De Rijck for excellent technical assistance and Jo Vandesompele for useful advice concerning qPCR data analysis. KT and TC acknowledge the support of the Fonds voor Wetenschappelijk Onderzoek (FWO). This work was partially funded by the Belgian Federation against Cancer.


  1. 1.
    Douglas LJ. Candida biofilms and their role in infection. Trends Microbiol. 2003;11:30–6. doi: 10.1016/S0966-842X(02)00002-1.PubMedCrossRefGoogle Scholar
  2. 2.
    Kojic EM, Darouiche RO. Candida infections of medical devices. Clin Microbiol Rev. 2004;17:255–67. doi: 10.1128/CMR.17.2.255-267.2004.PubMedCrossRefGoogle Scholar
  3. 3.
    Kumamoto CA. Candida biofilms. Curr Opin Microbiol. 2002;5:608–11. doi: 10.1016/S1369-5274(02)00371-5.PubMedCrossRefGoogle Scholar
  4. 4.
    Nobile CJ, Mitchell AP. Genetics and genomics of Candida albicans biofilm formation. Cell Microbiol. 2006;8:1382–91. doi: 10.1111/j.1462-5822.2006.00761.x.PubMedCrossRefGoogle Scholar
  5. 5.
    Baillie GS, Douglas LJ. Role of dimorphism in the development of Candida albicans biofilms. J Med Microbiol. 1999;48:671–9.PubMedGoogle Scholar
  6. 6.
    López-Ribot JL. Candida albicans biofilms: more than filamentation. Curr Biol. 2005;15:R453–5. doi: 10.1016/j.cub.2005.06.020.PubMedCrossRefGoogle Scholar
  7. 7.
    Hawser SP, Douglas LJ. Biofilm formation by Candida species on the surface of catheter materials in vitro. Infect Immun. 1994;62:915–21.PubMedGoogle Scholar
  8. 8.
    Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA. Biofilm formation by the fungal pathogen Candida albicans: development, architecture and drug resistance. J Bacteriol. 2001;183:5385–94. doi: 10.1128/JB.183.18.5385-5394.2001.PubMedCrossRefGoogle Scholar
  9. 9.
    Andes D, Nett J, Oschel P, Albrecht R, Marchillo K, Pitula A. Development and characterization of an in vivo central venous catheter Candida albicans biofilm model. Infect Immun. 2004;72:6023–31. doi: 10.1128/IAI.72.10.6023-6031.2004.PubMedCrossRefGoogle Scholar
  10. 10.
    Nobile CJ, Andes DR, Nett JE, Smith FJ, Yue F, Phan QT, et al. Critical role of Bcr1-dependent adhesins in C. albicans biofilm formation in vitro and in vivo. PLoS Pathog. 2006;2:e63. doi: 10.1371/journal.ppat.0020063.PubMedCrossRefGoogle Scholar
  11. 11.
    Zhao X, Daniels KJ, Oh SH, Green CB, Yeater KM, Soll DR, et al. Candida albicans Als3p is required for wild-type biofilm formation on silicone elastomer surfaces. Microbiology. 2006;152:2287–99. doi: 10.1099/mic.0.28959-0.PubMedCrossRefGoogle Scholar
  12. 12.
    Hoyer LL. The ALS gene family of Candida albicans. Trends Microbiol. 2001;9:176–80. doi: 10.1016/S0966-842X(01)01984-9.PubMedCrossRefGoogle Scholar
  13. 13.
    Hoyer LL, Green CB, Oh SH, Zhao X. Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family—a sticky pursuit. Med Mycol. 2007;20:1–15.Google Scholar
  14. 14.
    García-Sánchez S, Aubert S, Iraqui I, Janbon G, Ghigo JM, d’Enfert C. Candida albicans biofilms: a developmental state associated with specific and stable gene expression patterns. Eukaryot Cell. 2004;3:536–45. doi: 10.1128/EC.3.2.536-545.2004.PubMedCrossRefGoogle Scholar
  15. 15.
    O’Connor L, Lahiff S, Casey F, Glennon M, Cormican M, Maher M. Quantification of ALS1 gene expression in Candida albicans biofilms by RT-PCR using hybridisation probes on the LightCycler. Mol Cell Probes. 2005;19:153–62. doi: 10.1016/j.mcp. 2004.10.007.PubMedCrossRefGoogle Scholar
  16. 16.
    Nailis H, Coenye T, Van Nieuwerburgh F, Deforce D, Nelis HJ. Development and evaluation of different normalization strategies for gene expression studies in Candida albicans biofilms by real-time PCR. BMC Mol Biol. 2006;7:25. doi: 10.1186/1471-2199-7-25.PubMedCrossRefGoogle Scholar
  17. 17.
    Yeater KM, Chandra J, Cheng G, Mukherjee PK, Zhao X, Rodriguez-Zas SL, et al. Temporal analysis of Candida albicans gene expression during biofilm development. Microbiology. 2007;153:2373–85. doi: 10.1099/mic.0.2007/006163-0.PubMedCrossRefGoogle Scholar
  18. 18.
    Green CB, Zhao X, Yeater KM, Hoyer LL. Construction and real-time RT-PCR validation of Candida albicans PALS-GFP reporter strains and their use in flow cytometry analysis of ALS gene expression in budding and filamenting cells. Microbiology. 2005;151:1051–60. doi: 10.1099/mic.0.27696-0.PubMedCrossRefGoogle Scholar
  19. 19.
    Chandra J, Mukherjee PK, Leidich SD, Faddoul FF, Hoyer LL, Douglas LJ, et al. Antifungal resistance of candidal biofilms formed on denture acrylic in vitro. J Dent Res. 2001;80:903–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Kuhn DM, Chandra J, Mukherjee PK, Ghannoum MA. Comparison of biofilms formed by Candida albicans and Candida parapsilosis on bioprosthetic surfaces. Infect Immun. 2002;70:878–88. doi: 10.1128/IAI.70.2.878-888.2002.PubMedCrossRefGoogle Scholar
  21. 21.
    Nickel JC, Wright JB, Ruseska I, Marrie TJ, Whitfield C, Costerton JW. Antibiotic resistance of Pseudomonas aeruginosa colonizing a urinary catheter in vitro. Eur J Clin Microbiol. 1985;4:213–8. doi: 10.1007/BF02013600.PubMedCrossRefGoogle Scholar
  22. 22.
    Donlan RM, Piede JA, Heyes CD, Sanii L, Murga R, Edmonds P, et al. Model system for growing and quantifying Streptococcus pneumoniae biofilms in situ and in real time. Appl Environ Microbiol. 2004;70:4980–8. doi: 10.1128/AEM.70.8.4980-4988.2004.PubMedCrossRefGoogle Scholar
  23. 23.
    Honraet K, Goetghebeur E, Nelis HJ. Comparison of three assays for the quantification of Candida biomass in suspension and CDC reactor grown biofilms. J Microbiol Methods. 2005;63:287–95. doi: 10.1016/j.mimet.2005.03.014.PubMedCrossRefGoogle Scholar
  24. 24.
    Fu Y, Ibrahim AS, Sheppard DC, Chen YC, French SW, Cutler JE, et al. Candida albicans Als1p: an adhesin that is a downstream effector of the EFG1 filamentation pathway. Mol Microbiol. 2002;44:61–72. doi: 10.1046/j.1365-2958.2002.02873.x.PubMedCrossRefGoogle Scholar
  25. 25.
    Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002;3:RESEARCH0034.Google Scholar
  26. 26.
    Stoodley P, Sauer K, Davies DG, Costerton JW. Biofilms as complex differentiated communities. Annu Rev Microbiol. 2002;56:187–209. doi: 10.1146/annurev.micro.56.012302.160705.PubMedCrossRefGoogle Scholar
  27. 27.
    Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2004;2(2):95–108. doi: 10.1038/nrmicro821.PubMedCrossRefGoogle Scholar
  28. 28.
    Murillo LA, Newport G, Lan CY, Habelitz S, Dungan J, Agabian NM. Genome-wide transcription profiling of the early phase of biofilm formation by Candida albicans. Eukaryot Cell. 2005;4:1562–73. doi: 10.1128/EC.4.9.1562-1573.2005.PubMedCrossRefGoogle Scholar
  29. 29.
    Argimón S, Wishart JA, Leng R, Macaskill S, Mavor A, Alexandris T, et al. Developmental regulation of an adhesin gene during cellular morphogenesis in the fungal pathogen Candida albicans. Eukaryot Cell. 2007;6:682–692. doi: 10.1128/EC.00340-06.PubMedCrossRefGoogle Scholar
  30. 30.
    Hoyer LL, Payne TL, Bell M, Myers AM, Scherer S. Candida albicans ALS3 and insights into the nature of the ALS gene family. Curr Genet. 1998;33:451–459. doi: 10.1007/s002940050359.PubMedCrossRefGoogle Scholar
  31. 31.
    Zhao X, Oh SH, Cheng G, Green CB, Nuessen JA, Yeater K, et al. ALS3 and ALS8 represent a single locus that encodes a Candida albicans adhesin; functional comparisons between Als3p and Als1p. Microbiology. 2004;150:2415–2428. doi: 10.1099/mic.0.26943-0.PubMedCrossRefGoogle Scholar
  32. 32.
    Coleman DA, Oh S, Zhao X, Hoyer LL. Dynamics of Als protein localization on the Candida albicans cell surface. In: Poster presentation on the 9th ASM conference on Candida and Candidiasis, Jersey City, New Jersey; 2008.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Heleen Nailis
    • 1
  • Roosmarijn Vandenbroucke
    • 2
  • Kelly Tilleman
    • 3
  • Dieter Deforce
    • 3
  • Hans Nelis
    • 1
  • Tom Coenye
    • 1
    Email author
  1. 1.Laboratory for Pharmaceutical MicrobiologyGhent UniversityGhentBelgium
  2. 2.Laboratory for General Biochemistry and Physical PharmacyGhent UniversityGhentBelgium
  3. 3.Laboratory for Pharmaceutical BiotechnologyGhent UniversityGhentBelgium

Personalised recommendations