, 166:109

PCR Analysis of the Tri13 gene to Determine the Genetic Potential of Fusarium graminearum Isolates from Iran to Produce Nivalenol and Deoxynivalenol

  • Mahboobeh Haratian
  • Bahram Sharifnabi
  • Azizollah Alizadeh
  • Naser Safaie


Fusariumgraminearum trichothecene producing isolates can be broadly divided into two chemotypes based on the production of the 8- ketotrichothecenes deoxynivalenol (DON) and nivalenol (NIV). Functional Tri13 gene required for the production of NIV and 4- acetyl NIV, whereas in the isolates producing DON and its acetylated derivates, this gene is nonfunctional. In this study, a total of 57 isolates from different fields of Mazandaran province, Iran were identified as F. graminearum using classical methods and species specific primers. In order to assess the potential of isolates to produce NIV or DON, we used PCR to determine whether isolates carried a functional or nonfunctional Tri13 gene. Out of the 57 tested F. graminearum isolates with Tri13 PCR assays, 46 yielded an amplicon similar to the size predicted for nivalenol production, while 11 yielded an amplicon similar to the size predicted for deoxynivalenol production. From regions where more than one F. graminearum isolate was obtained, isolates were not exclusively of a single chemotype. It seems that genetic diversity among the isolates has relation with geographical region and wheat cultivar. The assay can provide information about the distribution of Tri13 haplotype that can be used in tracing of trichothecene contaminated samples.


Chemotype Deoxynivalenol 4-Acetyl nivalenol Fusarium graminearum Tri13 





4-Acetyl- nivalenol








  1. 1.
    Goswami RS, Kisler HC. Heading for disaster: Fusarium graminearum on cereal crops. Mol Plant Pathol. 2004;5:515–25.CrossRefGoogle Scholar
  2. 2.
    Lee T, Oh DW, Kim H-S, Lee J, Kim Y-H, Yun SH, Lee YW. Identification of a deoxynivalenol and nivalenol-producing chemotypes of Gibberella zeae by using PCR. Appl Environ Microbiol. 2001;67:2966–72.PubMedCrossRefGoogle Scholar
  3. 3.
    Toth B, Mesterhazy A, Horvath Z, Bartok T, Varga M, Varga J. Genetic variability of central European isolates of Fusarium graminearum species complex. Eur J Plant Pathol. 2005;113:35–45.CrossRefGoogle Scholar
  4. 4.
    Carter JP, Rezanoor HN, Holdem D, Desjardins AE, Plattner RD, Nicholson P. Variation in pathogenicity associated with the genetic diversity of F. graminearum. Eur J Plant Pathol. 2002;108:575–83.CrossRefGoogle Scholar
  5. 5.
    Cumagun CJR, Rabenstein R, Miedaner T. Genetic variation and covariation for aggressiveness, deoxynivalenol production and fungal colonization among progeny of Gibberella zeae in wheat. Plant Pathol. 2004;53:446–53.CrossRefGoogle Scholar
  6. 6.
    Cumagun CJR, Miedaner T. Segregation for aggressiveness and deoxynivalenol production of a population of Gibberella zeae causing head blight of wheat. Eur J Plant Pathol. 2004;110:789–99.CrossRefGoogle Scholar
  7. 7.
    Bakan B, Giraud- Delville C, Pinson L, Richard-Molard D, Fournier E, Brygoo Y. Identification by PCR of Fusarium culmorum strains producing large and small amounts of deoxynivalenon. Appl Environ Microbiol. 2002;68:5472–79.PubMedCrossRefGoogle Scholar
  8. 8.
    O’Donnell K, Ward TJ, Giester DM, Kistler HC, Aoki T. Genealogical concordance between the mating type locus an seven other nuclear genes supports formal recognition of nine phylogenetically distinct species within the Fusarium graminearum clad. Fungal Genet Biol. 2004;38:1–23.Google Scholar
  9. 9.
    Brown DW, Mc Cormick SP, Alexander NJ, Proctor RH. Inactivation of a cytochrome P-450 is a determinant of trichothecene diversity in Fusarium species. Fungal Genet Biol. 2002;36:224–33.PubMedCrossRefGoogle Scholar
  10. 10.
    Mc Cormick SP, Harris LJ, Alexander NJ, Ouellet T, Saparno A, Allard S, Desjardins AE. Tri1 in Fusarium graminearum encodes a P-450 oxygenase. Appl Environ Microbiol. 2004;70:2044–51.CrossRefGoogle Scholar
  11. 11.
    Fekete C, Logrieco A, Glezey G, Homok L. Screening of fungi for the presence of the trichothecene synthase encoding sequence by hybridization to the Tri5 gene cloned from Fusarium poa. Mycopathologia. 1997;138:91–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Edwards G, Pirgozliew SR, Hare MC, Jenkinson P. Quantification of trichithecene producing Fusarium species in harvested grain by competitive PCR to determine efficacies of fungicides against Fusarium head blight of winter wheat. Appl Environ Microbiol. 2001;67:1575–80.PubMedCrossRefGoogle Scholar
  13. 13.
    Proctor RH, Desjardins AE, Mc Cormick SP, Plattner RD, Alexander NJ, Brown DW. Genetic analysis of the role of trichothecene and fumonisin mycotoxins in the virulence of Fusarium. Eur J Plant Pathol. 2002;108:691–8.CrossRefGoogle Scholar
  14. 14.
    Hohn TM, Krishna R, Proctor RH. Characterization of a transcriptional activator controlling trichothecene toxin biosynthesis. Fungal Genet Biol. 1999;26:224–35.PubMedCrossRefGoogle Scholar
  15. 15.
    Kimura M, Tokai T, O’ Donnel K, Ward JT, Fujimura M, Yamagchi I. The trichothecene biosynthesis gene cluster of Fusarium graminearum F15 contains a limited number of essential pathway genes and expressed non-essential genes. FEBS Lett. 2003;359:105–10.CrossRefGoogle Scholar
  16. 16.
    Ichinoe M, Kurata H, Sugiura Y, Ueno Y. Chemotaxonomy Gibberella zeae with special reference to production of trichothecene and zearalenone. Appl Environ Microbiol. 1983;46:1364–9.PubMedGoogle Scholar
  17. 17.
    Lee T, Han Y-H, Kim K-H, Yun SH, Lee YW. Tri13 and Tri7 determine deoxynivalenol -and nivalenol -producing chemotypes of Gibberella zeae. Appl Environ Microbiol. 2002;68:2148–54.PubMedCrossRefGoogle Scholar
  18. 18.
    Li H-P, Wu A-B, Zhao Ch-S, Sholten O, Loffler H, Liao Y-C. Development of a generic PCR detection of deoxynivalenol and nivalenol chemotypes of Fusarium graminearum. FEMS Microbiol. 2005;243:505–11.CrossRefGoogle Scholar
  19. 19.
    Chandler EA, Simpsom DR, Thomsett MA, Nicholson P. Development of PCR assays to Tri7 and Tri13 trichothecene biosynthetic genes, and characterization of chemotypes of F. graminearum, Fusarium culmorum and Fusarium cerealis. Physiol Mol Plant Pathol. 2003;62:355–67.CrossRefGoogle Scholar
  20. 20.
    Sugiura Y, Watanabe Y, Tanaka T, Yamamoto S, Ueno Y. Occurrence of Gibberella zeae strains that produce both nivalenol and deoxynivalenol. Appl Environ Microbiol. 1990;56:3047–51.PubMedGoogle Scholar
  21. 21.
    Miller JD, Greenhalgh R, Wang YZ, Lu M. Trichothecene chemotypes of three Fusarium species. Mycologia. 1991;83:121–30.CrossRefGoogle Scholar
  22. 22.
    Alizadeh A, Etaati M, Safaie N, Saidi A. A sensitive bioassay method for evaluation of zearalenone production by Fusarium graminearum isolates the causal agent of wheat scab. Iran J Plant Pathol. 2003;39:39–44.Google Scholar
  23. 23.
    Safaie N, Alizadeh A, Saidi A, Rahimian H. Molecular characterization and genetic diversity among Iranian populations of Fusarium graminearum isolates, the causal agent of wheat scab. Iran J Plant Pathol. 2005;41(2):69–74.Google Scholar
  24. 24.
    Safaie N, Alizadeh A, Saidi A, Adam G. Optimization of a bioassay method for evaluation of zearalenone production in fungi and its application to Iranian isolated of Fusarium graminearum. Iran J Plant Pathol. 2005;41(2):87–92.Google Scholar
  25. 25.
    Jenning P, Coates ME, Walsh K, Turner JA, Nicholson P. Determination of a deoxynivalenol-and nivalenol-producing chemotypes of Fusarium graminearum isolated from wheat crops in England and Wales. Eur J Plant Pathol. 2004;53:643–52.CrossRefGoogle Scholar
  26. 26.
    Jennings P, Coates ME, Turner JA, Chandler EA, Nicholson P. Determination of a deoxynivalenol-and nivalenol-producing chemotypes of Fusarium culmorum isolates from England and Wales by PCR assay. Eur J Plant Pathol. 2004;53:182–90.CrossRefGoogle Scholar
  27. 27.
    Mesterhazy A. Role of deoxynivalenol in aggressiveness of Fusarium graminearum and F. culmorum in resistance to Fusarium head blight. Eur J Plant Pathol. 2002;108:675–84.CrossRefGoogle Scholar
  28. 28.
    Booth C. The genus Fusarium. Commonwealth Mycological Institute: Kew, Surrey; 1971.Google Scholar
  29. 29.
    Nelson PE, Toussoun TA, Marasas WFO. Fusarium species, an illustrated manual for identification, The Pennsylvania State University Press, 1984.Google Scholar
  30. 30.
    Jurjenson JE, Bowden RL, Zeller KA, Plattner RD. A genetic map of Gibberella zeae. Genetics. 2002;160:1451–60.Google Scholar
  31. 31.
    Schilling AG, Moller EM Hartwig HG. Polymerase chain reaction-based assays for species-specific detection of Fusaroum culmorum, F. graminearum and F. avenaceum. Phytopathology. 1996;86:515–22.CrossRefGoogle Scholar
  32. 32.
    Evans GK, Xie W, Dill-Machy R Micocha CJ. Biosynthesis of deoxynivalenol in spiklets of barley inoculated with macroconidia of Fusarium graminearum. Plant Dis. 2000;84:654–60.CrossRefGoogle Scholar
  33. 33.
    Tan MK, Simpfendorfer S, Backhouse D, Murray GM. Occurrence of fusarium head blight in Southern NSW in 2000: identification of causal fungi and determination of putative chemotype of F. graminearum isolates by PCR. Australas Plant Pathol. 2004;33:358–92.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Mahboobeh Haratian
    • 1
  • Bahram Sharifnabi
    • 1
  • Azizollah Alizadeh
    • 2
  • Naser Safaie
    • 2
  1. 1.Department of Plant Protection, College of AgricultureIsfahan University of TechnologyIsfahanIran
  2. 2.Division of Plant Pathology, College of AgricultureTarbiat Modares UniversityTehranIran

Personalised recommendations