Mycopathologia

, 166:285 | Cite as

Secreted Proteases from Dermatophytes

Article

Abstract

Dermatophytes are highly specialized pathogenic fungi that exclusively infect the stratum corneum, nails or hair, and it is evident that secreted proteolytic activity is important for their virulence. Endo- and exoproteases-secreted by dermatophytes are similar to those of species of the genus Aspergillus. However, in contrast to Aspergillus spp., dermatophyte-secreted endoproteases are multiple and are members of two large protein families, the subtilisins (serine proteases) and the fungalysins (metalloproteases). In addition, dermatophytes excrete sulphite as a reducing agent. In the presence of sulphite, disulphide bounds of the keratin substrate are directly cleaved to cysteine and S-sulphocysteine, and reduced proteins become accessible for further digestion by various endo- and exoproteases secreted by the fungi. Sulphitolysis is likely to be an essential step in the digestion of compact keratinized tissues which precedes the action of all proteases.

Keywords

Aspergillus Dermatophytes Microsporum Secreted proteases Trichophyton 

Abbreviations

AMC

7-Amido-4-methylcoumarin

Dpp

Dipeptidyl peptidase

DTH

Delayed-type hypersensitivity

IH

Immediate hypersensitivity

Lap

Leucine aminopeptidase

Mcp

Metallocarboxypeptidase

Mep

Metalloprotease

MM

Molecular mass

MS

Mass spectrometry

pNA

p-Nitroanilide

PMSF

Phenyl methyl sulphonyl fluoride

Scp

Serine carboxypeptidase

Sub

Subtilisin

References

  1. 1.
    Weitzman I, Summerbell RC. The dermatophytes. Clin Microbiol Rev. 1995;8:240–59.PubMedGoogle Scholar
  2. 2.
    Barrett AJ, Rawlings ND, Woessner JF, editors. Handbook of proteolytic enzymes. 2nd ed. London: Elsevier; 2004.Google Scholar
  3. 3.
    Von Heijne G. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 1986;14:4683–90.CrossRefGoogle Scholar
  4. 4.
    Pfeffer SR, Rothman JE. Biosynthetic protein transport and sorting by the endoplasmic reticulum and Golgi. Ann Rev Biochem. 1987;56:829–52.PubMedCrossRefGoogle Scholar
  5. 5.
    Eder J, Fersht AR. Pro-sequence-assisted protein folding. Mol Microbiol. 1995;16:609–14.PubMedCrossRefGoogle Scholar
  6. 6.
    Beggah S, Léchenne B, Reichard U, Foundling S, Monod M. Intra- and intermolecular events directing maturation of the Candida albicans secreted aspartic proteinase Sap1p. Microbiology. 2000;146:2765–73.PubMedGoogle Scholar
  7. 7.
    Mignon B, Nikkels A, Pierard G, Losson B. The in vitro and in vivo production of a 31.5 kDa keratinolytic subtilase from Microsporum canis and the clinical status in naturally infected cats. Dermatology. 1998;196:438–41.PubMedCrossRefGoogle Scholar
  8. 8.
    Mignon B, Swinnen M, Bouchara JP, Hofinger M, Nikkels A, Pierard G, Gerday C, Losson B. Purification and characterization of a 31.5 kDa keratinolytic subtilisin-like serine protease from Microsporum canis and evidence of its secretion in naturally infected cats. Med Mycol. 1998;36:395–404.PubMedGoogle Scholar
  9. 9.
    Brouta F, Descamps F, Fett T, Losson B, Gerday C, Mignon B. Purification and characterization of a 43.5 kDa keratinolytic metalloprotease from Microsporum canis. Med Mycol. 2001; 39:269–75.PubMedCrossRefGoogle Scholar
  10. 10.
    Brouta F, Descamps F, Monod M, Vermout S, Losson B, Mignon B. Secreted metalloprotease gene family of Microsporum canis. Infect Immun. 2002;70:5676–83.PubMedCrossRefGoogle Scholar
  11. 11.
    Descamps F, Brouta F, Monod M, Zaugg C, Baar D, Losson B, Mignon B. Isolation of a Microsporum canis gene family encoding three subtilisin-like proteases expressed in vivo. J Invest Dermatol. 2002;11:830–5.CrossRefGoogle Scholar
  12. 12.
    Jousson O, Léchenne B, Bontems O, Capoccia S, Mignon B, Barblan J, Quadroni M, Monod M. Multiplication of an ancestral gene encoding secreted fungalysin preceded species differentiation in the dermatophytes Trichophyton and Microsporum. Microbiology. 2004;150:301–10.PubMedCrossRefGoogle Scholar
  13. 13.
    Jousson O, Léchenne B, Bontems O, Mignon B, Reichard U, Barblan J, Quadroni M, Monod M. Secreted subtilisin gene family in Trichophyton rubrum. Gene. 2004;339:79–88.PubMedCrossRefGoogle Scholar
  14. 14.
    Monod M, Léchenne B, Jousson O, Grand D, Zaugg C, Stocklin R, Grouzmann E. Aminopeptidases and dipeptidyl-peptidases secreted by the dermatophyte Trichophyton rubrum. Microbiology. 2005;151:145–55.PubMedCrossRefGoogle Scholar
  15. 15.
    Sanyal AK, Das SK, Banerjee AB. Purification and partial characterization of an extracellular proteinase from Trichophyton rubrum. Sabouraudia. 1985;23:165–78.PubMedGoogle Scholar
  16. 16.
    Asahi M, Lindquist R, Fukuyama K, Apodaca G, Epstein WL, McKerrow JH. Purification and characterization of major extracellular proteinases from Trichophyton rubrum. Biochem J. 1989;232:139–44.Google Scholar
  17. 17.
    Apodaca G, McKerrow JH. Purification and characterization of a 27,000-Mr extracellular proteinase from Trichophyton rubrum. Infect Immun. 1989;57:3072–80.PubMedGoogle Scholar
  18. 18.
    Yu RJ, Harmon SR, Blank F. Isolation and purification of an extracellular keratinase from Trichophyton mentagrophytes. J Bacteriol. 1968;96:1435–6.PubMedGoogle Scholar
  19. 19.
    Yu RJ, Harmon SR, Grappel SF, Blank F. Two cell-bound keratinases of Trichophyton mentagrophytes. J Invest Dermatol. 1971;56:27–32.PubMedCrossRefGoogle Scholar
  20. 20.
    Tsuboi R, Ko IJ, Takamori K, Ogawa H. Isolation of a keratinolytic proteinase from Trichophyton mentagrophytes with enzymatic activity at acidic pH. Infect Immun. 1989;57:3479–83.PubMedGoogle Scholar
  21. 21.
    Aubaid AH, Muhsin TM. Partial purification and kinetic studies of an extracellular proteinase from Trichophyton mentagrophytes var. erinacei. Mycoses. 1998;41:163–8.PubMedGoogle Scholar
  22. 22.
    Siesenop U, Böhm KH. Comparative studies on keratinase production of Trichophyton mentagrophytes strains of animal origin. Mycoses. 1995;38:205–9.PubMedGoogle Scholar
  23. 23.
    Moallaei H, Zaini F, Larcher G, Beucher B, Bouchara JP. Partial purification and characterization of a 37 kDa extracellular proteinase from Trichophyton vanbreuseghemii. Mycopathologia. 2006;161:369–75.PubMedCrossRefGoogle Scholar
  24. 24.
    Takiuchi I, Higuchi D, Sei Y, Koga M. Isolation of an extracellular proteinase (keratinase) from Microsporum canis. Sabouraudia. 1982;20:281–8.PubMedGoogle Scholar
  25. 25.
    Takiuchi I, Higuchi D, Sei Y, Koga M. Immunological studies of an extracellular keratinase. J Dermatol. 1983;10:327–30.PubMedGoogle Scholar
  26. 26.
    Takiuchi I, Sei Y, Tagaki H, Negi M. Partial characterization of the extracellular keratinase from Microsporum canis. Sabouraudia. 1984;22:219–24.PubMedGoogle Scholar
  27. 27.
    Hamaguchi T, Morishita N, Usui R, Takiuchi I. Characterization of an extracellular keratinase from Microsporum canis. Jpn J Med Mycol. 2000;41:257–62.Google Scholar
  28. 28.
    Lee KH, Park KK, Park SH, Lee JB. Isolation, purification and characterization of keratinolytic proteinase from Microsporum canis. Yonsei Med J. 1987;28:131–8.PubMedGoogle Scholar
  29. 29.
    Simon M, Green H. Enzymatic cross-linking of involucrin and other proteins by keratinocytes particulates in vitro. Cell. 1985;40:687–3.Google Scholar
  30. 30.
    Hohl D, de Viragh PA, Amiguet-Barras F, Gibbs S, Backendorf C, Huber M. The small proline-rich proteins constitute a multigene family of differentially regulated cornified cell envelope precursors proteins. J Invest Dermatol. 1995;104:902–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Steinert PM, Marekow LN. The proteins elafin, filagrin, keratin intermediate filaments, loricrin, and small proline-rich proteins 1 and 2 are isodipeptide cross-linked components of the human cornified cell envelope. J Biol Chem. 1995;270:17702–11.PubMedCrossRefGoogle Scholar
  32. 32.
    Kalinin AE, Kajava AV, Steinert PM. Epithelial barrier function: assembly and structural features of the cornified cell envelope. BioEssays. 2000;24:789–800.CrossRefGoogle Scholar
  33. 33.
    Jaton-Ogay K, Paris S, Huerre M, Quadroni M, Falchetto R, Togni G, Latgé JP, Monod M. Cloning and disruption of the gene encoding an extracellular metalloprotease of Aspergillus fumigatus. Mol Microbiol. 1994;14:917–28.PubMedCrossRefGoogle Scholar
  34. 34.
    Reichard U, Büttner S, Eiffert H, Staib F, Rüchel R. Purification and characterisation of an extracellular serine proteinase from Aspergillus fumigatus and its detection in tissue. J. Med Microbiol. 1990;33:243–51.PubMedCrossRefGoogle Scholar
  35. 35.
    Jaton-Ogay K, Suter M, Crameri R, Falchetto R, Fatih A, Monod M. Nucleotide sequence of a genomic and a cDNA clone encoding an extracellular alkaline protease of Aspergillus fumigatus. FEMS Microbiol Lett. 1992;92:163–8.CrossRefGoogle Scholar
  36. 36.
    Reichard U, Cole GT, Hill TW, Rüchel R, Monod M. Molecular characterization and influence on fungal development of ALP2, a novel serine proteinase from Aspergillus fumigatus. Int J Med Microbiol. 2000;290:549–58.PubMedGoogle Scholar
  37. 37.
    Giddey K, Favre B, Quadroni M, Monod M. Closely related dermatophyte species produce different patterns of secreted proteins. FEMS Microbiol Lett. 2007;267:95–101.PubMedCrossRefGoogle Scholar
  38. 38.
    Jongeneel CV, Bouvier J, Bairoch A. A unique signature identifies a family of zinc-dependent metallopeptidases. FEBS Lett. 1989;242:211–4.PubMedCrossRefGoogle Scholar
  39. 39.
    Mignon BR, Coignoul F, Leclipteux T, Focant C, Losson BJ. Histopathological pattern and humoral immune response to a crude exo-antigen and purified keratinase of Microsporum canis in symptomatic and asymptomatic infected cats. Med Mycol. 1999;37:1–9.PubMedGoogle Scholar
  40. 40.
    Descamps F, Brouta F, Vermout S, Monod M, Losson B, Mignon B. Recombinant expression and antigenic properties of a 31.5-kDa keratinolytic subtilisin-like serine protease from Microsporum canis. FEMS Immunol Med Microbiol. 2003;38:29–34.PubMedCrossRefGoogle Scholar
  41. 41.
    Brouta F, Descamps F, Vermout S, Monod M, Losson B, Mignon B. Humoral and cellular immune response to a Microsporum canis recombinant keratinolytic metalloprotease (r-MEP3) in experimentally infected guinea pigs. Med Mycol. 2003;41:495–502.PubMedCrossRefGoogle Scholar
  42. 42.
    Descamps F, Brouta F, Vermout S, Willame C, Losson B, Mignon B. A recombinant 31.5 kDa keratinase and a crude exo-antigen from Microsporum canis fail to protect against a homologous experimental infection in guinea pigs. Vet Dermatol. 2003;14:305–12.PubMedCrossRefGoogle Scholar
  43. 43.
    Vermout S, Brouta F, Descamps F, Losson B, Mignon B. Evaluation of immunogenicity and protective efficacy of a Microsporum canis metalloprotease subunit vaccine in guinea pigs. FEMS Immunol Med Microbiol. 2004;40:75–80.PubMedCrossRefGoogle Scholar
  44. 44.
    Woodfolk JA. Allergy and dermatophytes. Clin Microbiol Rev. 2005;18:30–43.PubMedCrossRefGoogle Scholar
  45. 45.
    Woodfolk JA, Wheatley LM, Piyasena RV, Benjamin DC, Platts-Mills TAE. Trichophyton antigens associated with IgE antibodies and delayed type hypersensitivity – sequence homology to two families of serine proteinases. J Biol Chem. 1998;273:29489–96.PubMedCrossRefGoogle Scholar
  46. 46.
    Woodfolk JA, Slunt JB, Deuell B, Hayden ML, Platts-Mills TAE. Definition of a Trichophyton protein associated with delayed hypersensitivity in humans. Evidence for immediate (IgE and IgG4) and delayed hypersensitivity to a single protein. J Immunol. 1996;156:1695–701.PubMedGoogle Scholar
  47. 47.
    Byun T, Kofod L, Blinkovsky A. Synergistic action of an X-prolyl dipeptidyl aminopeptidase and a no specific aminopeptidase in protein hydrolysis. J Food Chem. 2001;49:2061–3.CrossRefGoogle Scholar
  48. 48.
    O’Cuinn G, Fitzgerald R, Bouchier P, McDonnell M. Generation of non-bitter casein hydrolysates by using combinations of a proteinase and aminopeptidases. Biochem Soc Trans. 1999;27:730–4.PubMedGoogle Scholar
  49. 49.
    Kunert J. Effect of reducing agents on proteolytic and keratinolytic activity of enzymes of Microsporum gypseum. Mycoses. 1992;35:343–8.PubMedGoogle Scholar
  50. 50.
    Kunert J. Physiology of keratinophilic fungi. In: Kushwaha RKS, Guarro J, editors. Biology of dermatophytes and other keratinophilic fungi. Bilbao: Revista Iberoamericana de Micología; 2000. p. 77–85.Google Scholar
  51. 51.
    Kunert J. Keratin decomposition by dermatophytes: evidence of the sulphitolysis of the protein. Experientia. 1972;28:1025–6.PubMedCrossRefGoogle Scholar
  52. 52.
    Kunert J. Keratin decomposition by dermatophytes. II. Presence of S-sulphocysteine and cysteic acid in soluble decomposition products. Z Allg Mikrobiol. 1976;16:97–105.PubMedCrossRefGoogle Scholar
  53. 53.
    Kunert J. Thiosulphate esters in keratin attacked by dermatophytes in vitro. Sabouraudia. 1972;10:6–13.PubMedGoogle Scholar
  54. 54.
    Ruffin P, Andrieu S, Biserte G, Biguet J. Sulphitolysis in keratinolysis. Biochemical proof. Sabouraudia. 1976;14:181–4.PubMedGoogle Scholar
  55. 55.
    Kunert J. Formation of sulphate, sulphite and S-sulphocysteine by the fungus Microsporum gypseum during growth on cystine. Folia Microbiol (Praha). 1975;20:142–51.CrossRefGoogle Scholar
  56. 56.
    Léchenne B, Reichard U, Zaugg C, Fratti M, Kunert J, Boulat O, Monod M. Sulphite efflux pumps in Aspergillus fumigatus and dermatophytes. Microbiology. 2007;153:905–13.PubMedCrossRefGoogle Scholar
  57. 57.
    Grobler J, Bauer F, Subden RE, vanVuuren HJJ. The mae1 gene of Schizosaccharomyces pombe encodes a permease for malate and other C4 dicarboxylic acids. Yeast. 1995;11:1485–91.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Service de Dermatologie et Vénéréologie, Laboratoire de Mycologie, BT422Centre Hospitalier Universitaire VaudoisLausanneSwitzerland

Personalised recommendations