, 166:267 | Cite as

Pathogenesis of Dermatophytosis

  • Sandy Vermout
  • Jérémy Tabart
  • Aline Baldo
  • Anne Mathy
  • Bertrand Losson
  • Bernard Mignon


Despite the superficial localization of most dermatophytosis, host-fungus relationship in these infections is complex and still poorly elucidated. Though many efforts have been accomplished to characterize secreted dermatophytic proteases at the molecular level, only punctual insights have been afforded into other aspects of the pathogenesis of dermatophytosis, such as fungal adhesion, regulation of gene expression during the infection process, and immunomodulation by fungal factors. However, new genetic tools were recently developed, allowing a more rapid and high-throughput functional investigation of dermatophyte genes and the identification of new putative virulence factors. In addition, sophisticated in vitro infection models are now used and will open the way to a more comprehensive view of the interactions between these fungi and host epidermal cells, especially keratinocytes.


Dermatophytes Pathogenesis Trichophyton Microsporum 



Delayed-type hypersensitivity


Immediate hypersensitivity






Dipeptidyl-peptidase IV


Trichophyton rubrum mannans


Reconstructed feline epidermis



We thank Prof. M. Monod (Dermatology Service, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland) for careful reading over and advice.


  1. 1.
    Monod M, Capoccia S, Lechenne B, Zaugg C, Holdom M, Jousson O. Secreted proteases from pathogenic fungi. Int J Med Microbiol. 2002;292:405–19.PubMedCrossRefGoogle Scholar
  2. 2.
    Brouta F, Descamps F, Monod M, Vermout S, Losson B, Mignon B. Secreted metalloprotease gene family of Microsporum canis. Infect Immun. 2002;70:5676–83.PubMedCrossRefGoogle Scholar
  3. 3.
    Descamps F, Brouta F, Monod M, Zaugg C, Baar D, Losson B, Mignon B. Isolation of a Microsporum canis gene family encoding three subtilisin-like proteases expressed in vivo. J Invest Dermatol. 2002;119:830–35.PubMedCrossRefGoogle Scholar
  4. 4.
    Jousson O, Lechenne B, Bontems O, Mignon B, Reichard U, Barblan J, Quadroni M, Monod M. Secreted subtilisin gene family in Trichophyton rubrum. Gene. 2004;339:79–88.PubMedCrossRefGoogle Scholar
  5. 5.
    Jousson O, Lechenne B, Bontems O, Capoccia S, Mignon B, Barblan J, Quadroni M, Monod M. Multiplication of an ancestral gene encoding secreted fungalysin preceded species differentiation in the dermatophytes Trichophyton and Microsporum. Microbiology. 2004;150:301–10.PubMedCrossRefGoogle Scholar
  6. 6.
    Monod M, Lechenne B, Jousson O, Grand D, Zaugg C, Stocklin R, Grouzmann E. Aminopeptidases and dipeptidyl-peptidases secreted by the dermatophyte Trichophyton rubrum. Microbiology. 2005;15:145–55.CrossRefGoogle Scholar
  7. 7.
    Zurita J, Hay RJ. Adherence of dermatophyte microconidia and arthroconidia to human keratinocytes in vitro. J Invest Dermatol. 1987;89:529–34.PubMedCrossRefGoogle Scholar
  8. 8.
    Aljabre SH, Richardson MD, Scott EM, Shankland GS. Germination of Trichophyton mentagrophytes on human stratum corneum in vitro. J Med Vet Mycol. 1992;30:145–52.PubMedCrossRefGoogle Scholar
  9. 9.
    Aljabre SH, Richardson MD, Scott EM, Rashid A, Shankland GS. Adherence of arthroconidia and germlings of anthropophilic and zoophilic varieties of Trichophyton mentagrophytes to human corneocytes as an early event in the pathogenesis of dermatophytosis. Clin Exp Dermatol. 1993;18:231–5.PubMedCrossRefGoogle Scholar
  10. 10.
    Rashid A, Scott E, Richardson MD. Early events in the invasion of the human nail plate by Trichophyton mentagrophytes. Br J Dermatol. 1995;133:932–40.PubMedCrossRefGoogle Scholar
  11. 11.
    Duek L, Kaufman G, Ulman Y, Berdicevsky I. The pathogenesis of dermatophyte infections in human skin sections. J Infect. 2004;48:175–80.PubMedCrossRefGoogle Scholar
  12. 12.
    Tabart J, Baldo A, Vermout S, Nusgens B, Lapiere C, Losson B, Mignon B. Reconstructed interfollicular feline epidermis as a model for Microsporum canis dermatophytosis. J Med Microbiol. 2007;56:971–5.PubMedCrossRefGoogle Scholar
  13. 13.
    Esquenazi D, Alviano CS, de Souza W, Rozental S. The influence of surface carbohydrates during in vitro infection of mammalian cells by the dermatophyte Trichophyton rubrum. Res Microbiol. 2004;155:144–53.PubMedCrossRefGoogle Scholar
  14. 14.
    Kaufman G, Horwitz BA, Duek L, Ullman Y, Berdicevsky I. Infection stages of the dermatophyte pathogen Trichophyton: microscopic characterization and proteolytic enzymes. Med Mycol. 2007;45:149–55.PubMedCrossRefGoogle Scholar
  15. 15.
    Ollert MW, Sohnchen R, Korting HC, Ollert U, Brautigam S, Brautigam W. Mechanisms of adherence of Candida albicans to cultured human epidermal keratinocytes. Infect Immun. 1993;61:4560–8.PubMedGoogle Scholar
  16. 16.
    Monod M, Borg-von Zepelin M. Secreted aspartic proteases as virulence factors of Candida species. Biol Chem. 2002;383:1087–93.PubMedCrossRefGoogle Scholar
  17. 17.
    De Bernardis F, Liu H, O’Mahony R, La Valle R, Bartollino S, Sandini S, Grant S, Brewis N, Tomlinson I, Basset RC, Holton J, Roitt IM, Cassone A. Human domain antibodies against virulence traits of Candida albicans inhibit fungus adherence to vaginal epithelium and protect against experimental vaginal candidiasis. J Infect Dis. 2007;195:149–57.PubMedCrossRefGoogle Scholar
  18. 18.
    Kumagai Y., Yagishita H., Yajima A., Okamoto T., Konishi K. Molecular mechanism for connective tissue destruction by dipeptidyl aminopeptidase IV produced by the periodontal pathogen Porphyromonas gingivalis. Infect Immun. 2005;73:2655–64.PubMedCrossRefGoogle Scholar
  19. 19.
    Hellgren L, Vincent J. Lipolytic activity of some dermatophytes. II. Isolation and characterisation of the lipase of Epidermophyton floccosum. J Med Microbiol. 1981;14:347–50.PubMedGoogle Scholar
  20. 20.
    Giddey K, Monod M, Barblan J, Potts A, Waridel P, Zaugg C, Quadroni M. Comprehensive analysis of proteins secreted by Trichophyton rubrum and Trichophyton violaceum under in vitro conditions. J Proteome Res. 2007;6:3081–92.PubMedCrossRefGoogle Scholar
  21. 21.
    Viani FC, Dos Santos JI, Paula CR, Larson CE, Gambale W. Production of extracellular enzymes by Microsporum canis and their role in its virulence. Med Mycol. 2001;39:463–8.PubMedCrossRefGoogle Scholar
  22. 22.
    Kunert J. Effect of reducing agents on proteolytic and keratinolytic activity of enzymes of Microsporum gypseum. Mycoses. 1992;35:343–8.PubMedGoogle Scholar
  23. 23.
    Lechenne B, Reichard U, Zaugg C, Fratti M, Kunert J, Boulat O, Monod M. Sulphite efflux pumps in Aspergillus fumigatus and dermatophytes. Microbiology. 2007;153:905–13.PubMedCrossRefGoogle Scholar
  24. 24.
    Mignon B, Swinnen M, Bouchara JP, Hofinger M, Nikkels A, Pierard G, Gerday C, Losson B. Purification and characterization of a 31.5 kDa keratinolytic subtilisin-like serine protease from Microsporum canis and evidence of its secretion in naturally infected cats. Med Mycol. 1998;36:395–404.PubMedGoogle Scholar
  25. 25.
    Marzluf GA. Genetic regulation of nitrogen metabolism in the fungi. Microbiol Mol Biol Rev. 1997;61:17–32.PubMedGoogle Scholar
  26. 26.
    Scazzocchio C. The fungal GATA factors. Curr Opin Microbiol. 2000;3:126–31.PubMedCrossRefGoogle Scholar
  27. 27.
    Hensel M, Arst HN Jr, Aufauvre-Brown A, Holden DW. The role of the Aspergillus fumigatus areA gene in invasive pulmonary aspergillosis. Mol Gen Genet. 1998;258:553–57.PubMedCrossRefGoogle Scholar
  28. 28.
    Limjindaporn T, Khalaf RA, Fonzi WA. Nitrogen metabolism and virulence of Candida albicans require the GATA-type transcriptional activator encoded by GAT1. Mol Microbiol. 2003;50:993–1004.PubMedCrossRefGoogle Scholar
  29. 29.
    Pellier AL, Lauge R, Veneault-Fourrey C, Langin T. CLNR1, the AREA/NIT2-like global nitrogen regulator of the plant fungal pathogen Colletotrichum lindemuthianum is required for the infection cycle. Mol Microbiol. 2003;48:639–55.PubMedCrossRefGoogle Scholar
  30. 30.
    Froeliger EH, Carpenter BE. NUT1, a major nitrogen regulatory gene in Magnaporthe grisea, is dispensable for pathogenicity. Mol Gen Genet. 1996;251:647–56.PubMedGoogle Scholar
  31. 31.
    Yamada T, Makimura K, Abe S. Isolation, characterization, and disruption of dnr1, the areA/nit-2-like nitrogen regulatory gene of the zoophilic dermatophyte, Microsporum canis. Med Mycol. 2006;44:243–52.PubMedCrossRefGoogle Scholar
  32. 32.
    Ferreira-Nozawa MS, Silveira HC, Ono CJ, Fachin AL, Rossi A, Martinez-Rossi NM. The pH signaling transcription factor PacC mediates the growth of Trichophyton rubrum on human nail in vitro. Med Mycol. 2006;44:641–5.PubMedCrossRefGoogle Scholar
  33. 33.
    Giddey K, Favre B, Quadroni M, Monod M. Closely related dermatophyte species produce different patterns of secreted proteins. FEMS Microbiol Lett. 2007;267:95–101.PubMedCrossRefGoogle Scholar
  34. 34.
    Kaufman G, Berdicevsky I, Woodfolk JA, Horwitz BA. Markers for host-induced gene expression in Trichophyton dermatophytosis. Infect Immun. 2005;73:6584–90.PubMedCrossRefGoogle Scholar
  35. 35.
    Jensen JM, Pfeiffer S, Akaki T, Schroder JM, Kleine M, Neumann C, Proksch E, Brasch J. Barrier function, epidermal differentiation, human beta-defensin 2 expression in tinea corporis. J Invest Dermatol. 2007;127:1720–7.PubMedGoogle Scholar
  36. 36.
    Dahl MV, Grando SA. Chronic dermatophytosis: what is special about Trichophyton rubrum? Adv Dermatol. 1994;9:97–109;discussion 110–1.PubMedGoogle Scholar
  37. 37.
    Brouta F, Descamps F, Vermout S, Monod M, Losson B, Mignon B. Humoral and cellular immune response to a Microsporum canis recombinant keratinolytic metalloprotease (r-MEP3) in experimentally infected guinea pigs. Med Mycol. 2003;41:495–501.PubMedCrossRefGoogle Scholar
  38. 38.
    Descamps F, Brouta F, Vermout S, Monod M, Losson B, Mignon B. Recombinant expression and antigenic properties of a 31.5-kDa keratinolytic subtilisin-like serine protease from Microsporum canis. FEMS Immunol Med Microbiol. 2003;38:29–34.PubMedCrossRefGoogle Scholar
  39. 39.
    Mignon BR, Leclipteux T, Focant C, Nikkels AJ, Pierard GE, Losson BJ. Humoral and cellular immune response to a crude exo-antigen and purified keratinase of Microsporum canis in experimentally infected guinea pigs. Med Mycol. 1999;37:123–9.PubMedGoogle Scholar
  40. 40.
    Mignon BR, Coignoul F, Leclipteux T, Focant C, Losson BJ. Histopathological pattern and humoral immune response to a crude exo-antigen and purified keratinase of Microsporum canis in symptomatic and asymptomatic infected cats. Med Mycol. 1999;37:1–9.PubMedGoogle Scholar
  41. 41.
    Woodfolk JA, Platts-Mills TA. Diversity of the human allergen-specific T cell repertoire associated with distinct skin test reactions: delayed-type hypersensitivity-associated major epitopes induce Th1- and Th2-dominated responses. J Immunol. 2001;167:5412–9.PubMedGoogle Scholar
  42. 42.
    Woodfolk JA, Sung SS, Benjamin DC, Lee JK, Platts-Mills TA. Distinct human T cell repertoires mediate immediate and delayed-type hypersensitivity to the Trichophyton antigen, Tri r 2. J Immunol. 2000;165:4379–87.PubMedGoogle Scholar
  43. 43.
    Woodfolk JA, Wheatley LM, Piyasena RV, Benjamin DC, Platts-Mills TA. Trichophyton antigens associated with IgE antibodies and delayed type hypersensitivity. Sequence homology to two families of serine proteinases. J Biol Chem. 1998;273:29489–96.PubMedCrossRefGoogle Scholar
  44. 44.
    Beauvais A, Monod M, Wyniger J, Debeaupuis JP, Grouzmann E, Brakch N, Svab J, Hovanessian AG, Latge JP. Dipeptidyl-peptidase IV secreted by Aspergillus fumigatus, a fungus pathogenic to humans. Infect Immun. 1997;65:3042–7.PubMedGoogle Scholar
  45. 45.
    Blake JS, Dahl MV, Herron MJ, Nelson RD. An immunoinhibitory cell wall glycoprotein (mannan) from Trichophyton rubrum. J Invest Dermatol. 1991;96:657–61.PubMedCrossRefGoogle Scholar
  46. 46.
    MacCarthy KG, Blake JS, Johnson KL, Dahl MV, Kalish RS. Human dermatophyte-responsive T-cell lines recognize cross-reactive antigens associated with mannose-rich glycoproteins. Exp Dermatol. 1994;3:66–71.PubMedCrossRefGoogle Scholar
  47. 47.
    Grando SA, Hostager BS, Herron MJ, Dahl MV, Nelson RD. Binding of Trichophyton rubrum mannan to human monocytes in vitro. J Invest Dermatol. 1992;98:876–80.PubMedCrossRefGoogle Scholar
  48. 48.
    Grando SA, Herron MJ, Dahl MV, Nelson RD. Binding and uptake of Trichophyton rubrum mannan by human epidermal keratinocytes: a time-course study. Acta Derm Venereol. 1992;72:273–6.PubMedGoogle Scholar
  49. 49.
    Dahl MV. Suppression of immunity and inflammation by products produced by dermatophytes. J Am Acad Dermatol. 1993;28:S19-23.PubMedCrossRefGoogle Scholar
  50. 50.
    Ikuta K, Shibata N, Blake JS, Dahl MV, Nelson RD, Hisamichi K, Kobayashi H, Suzuki S, Okawa Y. NMR study of the galactomannans of Trichophyton mentagrophytes and Trichophyton rubrum. Biochem J. 1997;323:297–305.PubMedGoogle Scholar
  51. 51.
    Blake JS, Cabrera RC, Dahl MV, Herron MJ, Nelson RD. Comparison of the immunoinhibitory properties of cell wall mannan glycoproteins from Trichophyton rubrum and Microsporum canis [abstract]. J Invest Dermatol. 1991;96:601.CrossRefGoogle Scholar
  52. 52.
    Campos MR, Russo M, Gomes E, Almeida SR. Stimulation, inhibition and death of macrophages infected with Trichophyton rubrum. Microbes Infect. 2006;8:372–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Ogawa H, Summerbell RC, Clemons KV, Koga T, Ran YP, Rashid A, Sohnle PG, Stevens DA, Tsuboi R. Dermatophytes and host defence in cutaneous mycoses. Med Mycol. 1998;36(Suppl 1):166–73.PubMedGoogle Scholar
  54. 54.
    Shiraki Y, Ishibashi Y, Hiruma M, Nishikawa A, Ikeda S. Cytokine secretion profiles of human keratinocytes during Trichophyton tonsurans and Arthroderma benhamiae infections. J Med Microbiol. 2006;55:1175–85.PubMedCrossRefGoogle Scholar
  55. 55.
    Koga T, Duan H, Urabe K, Furue M. Immunohistochemical detection of interferon-gamma-producing cells in dermatophytosis. Eur J Dermatol. 2001;11:105–7.PubMedGoogle Scholar
  56. 56.
    Engele M, Stossel E, Castiglione K, Schwerdtner N, Wagner M, Bolcskei P, Rollinghoff M, Stenger S. Induction of TNF in human alveolar macrophages as a potential evasion mechanism of virulent Mycobacterium tuberculosis. J Immunol. 2002;168:1328–37.PubMedGoogle Scholar
  57. 57.
    Woodfolk JA. Allergy and dermatophytes. Clin Microbiol Rev. 2005;18:30–43.PubMedCrossRefGoogle Scholar
  58. 58.
    Ludwig RJ, Woodfolk JA, Grundmann-Kollmann M, Enzensberger R, Runne U, Platts-Mills TA, Kaufmann R, Zollner TM. Chronic dermatophytosis in lamellar ichthyosis: relevance of a T-helper 2-type immune response to Trichophyton rubrum. Br J Dermatol. 2001;145:518–21.PubMedCrossRefGoogle Scholar
  59. 59.
    Grouzmann E, Monod M, Landis B, Wilk S, Brakch N, Nicoucar K, Giger R, Malis D, Szalay-Quinodoz I, Cavadas C, Morel DR, Lacroix JS. Loss of dipeptidylpeptidase IV activity in chronic rhinosinusitis contributes to the neurogenic inflammation induced by substance P in the nasal mucosa. FASEB J. 2002;16:1132–4.PubMedGoogle Scholar
  60. 60.
    Landis BN, Grouzmann E, Monod M, Busso N, Petak F, Spiliopoulos A, Robert JH, Szalay-Quinodoz I, Morel DR, Lacroix JS. Implication of dipeptidylpeptidase IV activity in human bronchial inflammation and in bronchoconstriction evaluated in anesthetized rabbits. Respiration. 2008;75:89–97.PubMedCrossRefGoogle Scholar
  61. 61.
    Gonzalez R, Ferrer S, Buesa J, Ramon D. Transformation of the dermatophyte Trichophyton mentagrophytes to hygromycin B resistance. Infect Immun. 1989;57:2923–5.PubMedGoogle Scholar
  62. 62.
    Yamada T, Makimura K, Uchida K, Yamaguchi H. Reproducible genetic transformation system for two dermatophytes, Microsporum canis and Trichophyton mentagrophytes. Med Mycol. 2005;43:533–44.PubMedCrossRefGoogle Scholar
  63. 63.
    Kaufman G, Horwitz BA, Hadar R, Ullmann Y, Berdicevsky I. Green fluorescent protein (GFP) as a vital marker for pathogenic development of the dermatophyte Trichophyton mentagrophytes. Microbiology. 2004;150:2785–90.PubMedCrossRefGoogle Scholar
  64. 64.
    Ruiz-Diez B. Strategies for the transformation of filamentous fungi. J Appl Microbiol. 2002;92:189–95.PubMedCrossRefGoogle Scholar
  65. 65.
    Fachin AL, Ferreira-Nozawa MS, Maccheroni W Jr, Martinez-Rossi NM. Role of the ABC transporter TruMDR2 in terbinafine, 4-nitroquinoline N-oxide and ethidium bromide susceptibility in Trichophyton rubrum. J Med Microbiol. 2006;55:1093–9.PubMedCrossRefGoogle Scholar
  66. 66.
    Nakayashiki H. RNA silencing in fungi: mechanisms and applications. FEBS Lett. 2005;579:5950–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Vermout S, Tabart T, Baldo A, Monod M, Losson B, Mignon B. RNA silencing in the dermatophyte Microsporum canis. FEMS Microbiol Lett. 2007;275:38–45.PubMedCrossRefGoogle Scholar
  68. 68.
    Wang L, Ma L, Leng W, Liu T, Yu L, Yang J, Yang L, Zhang W, Zhang Q, Dong J, Xue Y, Zhu Y, Xu X, Wan Z, Ding G, Yu F, Tu K, Li Y, Li R, Shen Y, Jin Q. Analysis of the dermatophyte Trichophyton rubrum expressed sequence tags. BMC Genomics. 2006;7:255.PubMedCrossRefGoogle Scholar
  69. 69.
    Zhang W, Yu L, Leng W, Wang X, Wang L, Deng X, Yang J, Liu T, Peng J, Wang J, Li S, Jin Q. cDNA microarray analysis of the expression profiles of Trichophyton rubrum in response to novel synthetic fatty acid synthase inhibitor PHS11A. Fungal Genet Biol. 2007;44:1252–61.PubMedCrossRefGoogle Scholar
  70. 70.
    Yu L, Zhang W, Wang L, Yang J, Liu T, Peng J, Leng W, Chen L, Li R, Jin Q. Transcriptional profiles of the response to ketoconazole and amphotericin B in Trichophyton rubrum. Antimicrob Agents Chemother. 2007;51:144–53.PubMedCrossRefGoogle Scholar
  71. 71.
    Liu T, Zhang Q, Wang L, Yu L, Leng W, Yang J, Chen L, Peng J, Ma L, Dong J, Xu X, Xue Y, Zhu Y, Zhang W, Yang L, Li W, Sun L, Wan Z, Ding G, Yu F, Tu K, Qian Z, Li R, Shen Y, Li Y, Jin Q. The use of global transcriptional analysis to reveal the biological and cellular events involved in distinct development phases of Trichophyton rubrum conidial germination. BMC Genomics. 2007;8:100.PubMedCrossRefGoogle Scholar
  72. 72.
    Smijs TG, Bouwstra JA, Schuitmaker HJ, Talebi M, Pavel S. A novel ex vivo skin model to study the susceptibility of the dermatophyte Trichophyton rubrum to photodynamic treatment in different growth phases. J Antimicrob Chemother. 2007;59:433–40.PubMedCrossRefGoogle Scholar
  73. 73.
    Rashid A, Scott EM, Richardson MD. Inhibitory effect of terbinafine on the invasion of nails by Trichophyton mentagrophytes. J Am Acad Dermatol. 1995;33:718–23.PubMedCrossRefGoogle Scholar
  74. 74.
    Rashid A, Hodgins MB, Richardson MD. An in vitro model of dermatophyte invasion of the human hair follicle. J Med Vet Mycol. 1996;34:37–42.PubMedCrossRefGoogle Scholar
  75. 75.
    Nakamura Y, Kano R, Hasegawa A, Watanabe S. Interleukin-8 and tumor necrosis factor alpha production in human epidermal keratinocytes induced by Trichophyton mentagrophytes. Clin Diagn Lab Immunol. 2002;9:935–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Rashid A, Edward M, Richardson MD. Activity of terbinafine on Trichophyton mentagrophytes in a human living skin equivalent model. J Med Vet Mycol. 1995;33:229–33.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Sandy Vermout
    • 1
  • Jérémy Tabart
    • 1
  • Aline Baldo
    • 1
  • Anne Mathy
    • 1
  • Bertrand Losson
    • 1
  • Bernard Mignon
    • 1
  1. 1.Department of Infectious & Parasitic Diseases, Parasitology, Faculty of Veterinary MedicineUniversity of LiègeLiègeBelgium

Personalised recommendations