Advertisement

Mycopathologia

, Volume 166, Issue 5–6, pp 277–283 | Cite as

Immunology of Dermatophytosis

  • Sandro Rogerio Almeida
Article

Abstract

The immune response to infection by dermatophytes ranges from a non-specific host mechanism to a humoral and cell-mediated immune response. The currently accepted view is that a cell-mediated immune response is responsible for the control of dermatophytosis. Indeed, some individuals develop a chronic or recurrent infection mediated by the suppression of a cell-mediated immune response. The immune response to Trichophyton is unusual in that this fungus can elicit both immediate hypersensitivity (IH) and delayed-type hypersensitivity (DTH) in different individuals when they are submitted to a skin test reaction. Understanding the nature and function of the immune response to dermatophytes is an exciting challenge that might lead to novel approaches in the treatment and immunological prophylaxis of dermatophytosis.

Keywords

Dermatophytosis Immunology Innate immunity Adaptive immunity 

References

  1. 1.
    Romani L. Immunity to fungal infection. Nat Rev. 2004;4:1–13.CrossRefGoogle Scholar
  2. 2.
    Gantner BN, Simmons RM, Canavera SJ, Akinra S, Underhill DM. Collaborative induction of inflammatory responses by Dectin-1 and Toll-like receptor 2. J Exp Med. 2003;197:1119–24.CrossRefGoogle Scholar
  3. 3.
    Woodfolk JA, Platts-Mills TAE. The immune response to dermatophytes. Res Immunol. 1998;149:436–45.PubMedCrossRefGoogle Scholar
  4. 4.
    Woodfolk JA, Platts-MILLS TAE. Diversity of the human allergen-specific T cell repertoire associated with distinct skin test reactions: delayed-type hypersensitivity-associated major epitopes induce Th1-and Th2-dominated responses. J Immunol. 2001;167:5412–19.PubMedGoogle Scholar
  5. 5.
    Woodfolk JA. Allergy and dermatophytes. Clin Microbiol Rev. 2005;18:30–43.PubMedCrossRefGoogle Scholar
  6. 6.
    Romani L. Innate and adaptive immunity in Candida albicans infections and saprophytism. J Leukoc Biol. 2000;68:175–9.PubMedGoogle Scholar
  7. 7.
    Romani L. Immunity to Candida albicans: Th1, Th2 cells and beyond. Curr Opin Microbiol. 1999;2:363–7.PubMedCrossRefGoogle Scholar
  8. 8.
    Grappel SF, Blank F. Role of keratinases in dermatophytosis. I. Immune responses of guinea pigs infected with Trichophyton mentagrophytes and guinea pigs immunized with keratinases. Dermatologica. 1972;145:245–55.PubMedGoogle Scholar
  9. 9.
    Shiraki Y, Ishibashi Y, Hiruma M, Nishikawa A, Ikeda S. Cytokine secretion profiles of human keratinocytes during Trichophyton tonsurans and Arthroderma benhamiae infections. J Med Microbiol. 2006;55:1175–85.PubMedCrossRefGoogle Scholar
  10. 10.
    Dahl MV, Carpenter R. Polymorphonuclear leukocytes, complement, and Trichophyton rubrum. J Invest Dermatol. 1986;86:138–41.PubMedCrossRefGoogle Scholar
  11. 11.
    Szepes E, Magyarlaki M, Battyani Z, Schneider I. Immunohistological characterization of the cellular infiltrate in dermatophytosis. Mycoses. 1993;36:203–6.PubMedGoogle Scholar
  12. 12.
    Calderon RA, Hay RJ. Fungicidal activity of human neutrophils and monocytes on dermatophyte fungi, Trichophyton quinckeanum and Trichophyton rubrum. Immunology. 1987;61:289–95.PubMedGoogle Scholar
  13. 13.
    Campos MRM, Russo M, Gomes E, Almeida SR. Stimulation, inhibition and death of macrophages infected with Trichophyton rubrum. Microbes Infect. 2006;8:372–9.PubMedCrossRefGoogle Scholar
  14. 14.
    Engele M, Stossel E, Castiglione K, Schwerdtner N, Wagner M, Bolcskei P, Rollinghoff M, Stenger S. Induction of TNF in human alveolar macrophages as a potential evasion mechanism of virulent Mycobacterium tuberculosis. J Immunol. 2002;168:1328–37.PubMedGoogle Scholar
  15. 15.
    Netea MG, Sutmuller R, Hermann C, Van der Graaf CA, Van der Meer JW, van Krieken JH, Hartung T, Adema G, Kullberg BJ. Toll-like receptor 2 suppresses immunity against Candida albicans through induction of IL-10 and regulatory T cells. J Immunol. 2004;172:3712–8.PubMedGoogle Scholar
  16. 16.
    Shortman K, Lui YJ. Mouse and human dendritic cell subtypes. Nat Rev Immunol. 2002;2:151–61.PubMedCrossRefGoogle Scholar
  17. 17.
    Pasare C, Medzhitov R. Toll-like receptors and acquired immunity. Semin Immunol. 2004;16:23–6.PubMedCrossRefGoogle Scholar
  18. 18.
    Kopp E, Medzhitov R. Recognition of microbial infection by Toll-like receptors. Curr Opin Immunol. 2003;15:396–401.PubMedCrossRefGoogle Scholar
  19. 19.
    Villamón E, Gozalbo D, Roig P, O´Connor JE, Fradelizi D, Gil ML. Toll-like receptor-2 is essential in murine defenses against Candida albicans infections. Microbes Infect. 2004;6:1–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Braedel S, Radsak M, Einsele H, Latgé J-P, Michan A, Loeffler J, Haddad Z, Grigoleit U, Schil H, Hebart H. Aspergillus fumigatus antigens active innate immune cells via Toll-like receptors 2 and 4. Br J Haematol. 2004;125:392–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Sing A, Rost D, Tvardovskaia N, Roggenkamp A, Widemann A, Kirschning CJ, Aefelbacher M, Heesemann J. Yersinia V-antigen exploits Toll-like receptor 2 and CD14 for interleukin-10-mediated immunosuppression. J Exp Med. 2002;196:1017–24.PubMedCrossRefGoogle Scholar
  22. 22.
    Netea MG, Warris A, Van der Meer JW, Fenton MJ, Verver-Janssen TJ, Jacobs LE, Andresen T, Verweij PE, Kullberg BJ. Aspergillus fumigatus evades immune recognition during germination through loss of toll-like receptor-4-mediated signal transduction. J Infect Dis. 2003;188:320–6.PubMedCrossRefGoogle Scholar
  23. 23.
    Brown GD, Herre J, Williams DL, Willment JA, Marshall ASJ, Gordon S. Dectin-1 mediates the biological effects of β-glucans. J Exp Med. 2003;197:1119–24.PubMedCrossRefGoogle Scholar
  24. 24.
    Sato K, Yang XL, Yudate T, Chung JS, Wu J, Luby-Phelps K, Kimberly RP, Underhill D, Cruz PD Jr, Ariizumi K. Dectin-2 is a pattern recognition receptor for fungi that couples with the Fc receptor γ chain to induce innate immune responses. J Biol Chem. 2006;28:38854–66.CrossRefGoogle Scholar
  25. 25.
    Svejgaard E. Humoral antibody responses in the immunopathogenesis of dermatophytosis. Acta Derm Venereol Suppl (Stockh). 1986;121:85–91.Google Scholar
  26. 26.
    Grappel SF, Blank F, Bishop CT. Circulating antibodies in dermatophytosis. Dermatologica. 1972;144:1–11.PubMedCrossRefGoogle Scholar
  27. 27.
    De Haan P, Wickler JR, Van Der Raay-Helmer EMH, Boorsina DM. Antigens of dermatophytes, their characterization using monoclonal antibodies. In: Kurstak E (ed.), Immunology of fungal diseases. Marcel Dekker, Inc., New York, 1989;113–32.Google Scholar
  28. 28.
    Kaaman T, von Stedingk LV, von Stedingk M, Wasserman J. ELISA-determined serological reactivity against purified trichophytin in dermatophytosis. Acta Derm Venereol. 1981;61:313–317.PubMedGoogle Scholar
  29. 29.
    Alonso A, Pionetti CH, Mouchián K, Albónico JF, Irañeta SG, Potenza M, Iovannitti C. Hypersensitivity to Trichophyton rubrum antigens in atopic and non-atopic podiatrists. Allergol Immunopathol (Madrid). 2003;31:70–6 (in spanish).CrossRefGoogle Scholar
  30. 30.
    Slunt JB, Taketomi EA, Woodfolk JA, Hayden ML, Plats-Mills TAE. The immune response to Trichophyton tonsurans: distinct T cell cytokine profiles to a single protein among subjects with immediate and delayed hypersensitivity. J Immunol. 1996;157:5192–7.PubMedGoogle Scholar
  31. 31.
    Woodfolk JA, Slunt JB, Deuell B, Hayden ML, Platts-Mills TA. Definition of a Trichophyton protein associated with delayed hypersensitivity in humans: evidence for immediate (IgE and IgG4) and delayed hypersensitivity to a single protein. J Immunol. 1996;156:1695–701.PubMedGoogle Scholar
  32. 32.
    Calderon RA. Immunoregulation of dermatophytosis. Crit Rev Microbiol. 1989;16:339–68.PubMedGoogle Scholar
  33. 33.
    Lepper AWD. Experimental bovine Trichophyton verrucosum infection. The cellular responses in primary lesions of the skin resulting from surface or intradermal inoculation. Res Vet Sci. 1974;16:287–98.PubMedGoogle Scholar
  34. 34.
    Hombo S, Jones HE, Artis WM. Chronic dermatophyte infection: evaluation of the Ig class-specific antibodies response reactive with polysaccharide and peptide antigens derived from Trichophyton mentagrophytes. J Invest Dermatol. 1984;82:287–90.CrossRefGoogle Scholar
  35. 35.
    Jones HE. Immune response and host resistance of human to dermatophyte infection. J Am Acad Dermatol. 1993;28:S12–8.PubMedCrossRefGoogle Scholar
  36. 36.
    MacCarthy KG, Blake JS, Johnson KL, Dahl MV, Kalish RS. Human dermatophyte-responsive T cell lines recognize cross-reactive antigens associated with mannose-rich glycoproteins. Exp Dermatol. 1994;3:66–71.PubMedCrossRefGoogle Scholar
  37. 37.
    Koga T, Duan H, Urabe K, Furue M. Immunohistochemical detection of interferon-gamma-producing cells in dermatophytosis. Eur J Dermatol. 2003;11:105–7.Google Scholar
  38. 38.
    Cherwinski HM, Schumacher JH, Brown JH, Mosmann TR. Two types of mouse helper T cell clone. lll. Further differences in lymphokine synthesis between Th1 and Th2 clones revealed by RNA hybridization, functionally monospecific bioassays, and monoclonal antibodies. J Exp Med. 1987;166:1229–44.PubMedCrossRefGoogle Scholar
  39. 39.
    Nacy CA, Fortier AH, Pappas MG, Henry R. Susceptibility of inbred mice to Leishmania infection: correlation of susceptibility with in vitro defective macrophage microbicidal activities. Cell Immunol. 1983;77:298–307.PubMedCrossRefGoogle Scholar
  40. 40.
    Mosmann TR, Moore KW. The role of IL-10 in crossregulation of Th1 and Th2 response. Immunol Today. 1991;12:A49–53.PubMedCrossRefGoogle Scholar
  41. 41.
    Behin R, Mauel J, Sordat B. Leishmania tropica: pathogenicity and in vitro macrophage function in strains of inbred mice. Exp Parasitol. 1979;48:81–6.PubMedCrossRefGoogle Scholar
  42. 42.
    McLeod R, Buschman E, Arbuckle LD, Skamene E. lmmunogenetics in the analysis of resistance to intracellular pathogens. Curr Opin Immunol. 1995;7:539–52.PubMedCrossRefGoogle Scholar
  43. 43.
    Bretscher PA, Wei G, Menon JN, Bielefeldt-Ohmann H. Establishment of stable, cell-mediated immunity that makes “susceptible” mice resistant to Leishmania major. Science. 1992;257:539–42.PubMedCrossRefGoogle Scholar
  44. 44.
    Kuchroo VK, Prabhu M, Brown JA, Ranger AM, Zamvil SS, Sobel RA. B7–1 and B7–2 costimulatory molecules active differentially the Th1/Th2 developmental pathways: application to autoimmune disease therapy. Cell. 1995;80:707–18.PubMedCrossRefGoogle Scholar
  45. 45.
    Cella M, Sallusto F, Lanzavecchia A. Origin, maturation and antigen presenting function of dendritic cells. Curr Opin Immunol. 1997;9:10–6.PubMedCrossRefGoogle Scholar
  46. 46.
    Furgier-Vivier I, Servet-Delprat C, Rivailler P, Rissoan M-C, Liu Y-J, Rabourdin-Combe C. Measles virus suppresses cell-mediated immunity by interfering with the survival and functions of dendritic and T cells. J Exp Med. 1997;186:813–23.CrossRefGoogle Scholar
  47. 47.
    Reise Sousa C, Sher A, Kaye P. The role of dendritic cells in the induction and regulation of immunity to microbial infection. Curr Opin Immunol. 1999;11:392–8.CrossRefGoogle Scholar
  48. 48.
    Woodfolk JA, Sung SS, Benjamin DC, Lee JK, Platts-Mill TA. Distinct human T cell repertoires mediate immediate and delayed-type hypersensitivity to the Trichophyton antigen, Tri r 2. J Immunol. 2000;165:4379–87.PubMedGoogle Scholar
  49. 49.
    Green F 3rd, Lee KW, Balish E. Chronic T. mentagrophytes dermatophytosis of guinea pig skin grafts on nude mice. J Invest Dermatol. 1982;79:125–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Calderon RA, Hay RJ. Cell-mediated immunity in experimental murine dermatophytosis. II. Adoptive transfer of immunity to dermatophyte infection by lymphoid cells from donors with acute or chronic infections. Immunology. 1984;53:465–72.PubMedGoogle Scholar
  51. 51.
    Blake JS, Dahl MV, Herron MJ, Nelson RD. An immunoinhibitory cell wall glycoprotein (mannan) from Trichophyton rubrum. J Invest Dermatol. 1991;96:657–61.PubMedCrossRefGoogle Scholar
  52. 52.
    Grando SA, Hostager BS, Herron MJ, Dahl MV, Nelson RD. Binding of Trichophyton rubrum mannan to human monocytes in vitro. J Invest Dermatol. 1992;98:876–80.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical SciencesSão Paulo UniversitySão PauloBrazil

Personalised recommendations