, Volume 164, Issue 3, pp 101–118 | Cite as

Fusarium toxins of the scirpentriol subgroup: a review

  • Margit Schollenberger
  • Winfried Drochner
  • Hans-Martin Müller


Scirpentriol and its seven acetylated derivatives comprise a family of type-A trichothecene toxins produced by several species of Fusarium fungi. Out of this group 4,15-diacetoxyscirpenol has attracted most attention. It elicits toxic responses in several species and was detected in a variety of substrates. Out of the three possible monoacetylated derivatives 15-monoacetoxyscirpenol and the parent alcohol scirpentriol received some attention, whereas the remaining members of the family were mentioned in few reports. The present review deals with the structure, biosynthesis, analysis and toxicity of scirpentriol toxins. Formation by Fusarium species as well as culture conditions used for toxigenicity studies are reviewed; data about the natural occurrence of scirpentriol toxins in different cereal types, cereal associated products as well as in non-grain matrices including potato and soya bean are reported. Basing on literature reports about the toxicity of scirpentriol toxins an attempt is made to summarise the state of knowledge for risk evaluation for human and animal health.


Analysis Fusarium Occurrence Scirpentriol toxins Type-A trichothecenes Toxigenicity 











HT-2 toxin










T-2 toxin


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Krska R, Baumgartner S, Josephs R. The state-of the-art in the analysis of type-A and -B trichothecene mycotoxins in cereals. Fresen J Anal Chem 2001;371:285–99.Google Scholar
  2. 2.
    Joint FAO/WHO Expert Committee on Food Additives (JECFA), 2001. Safety evaluation of certain mycotoxins in food. Deoxynivalenol, HT-2 and T-2 toxin. FAO Food and Nutrition paper 74. Scholar
  3. 3.
    Richardson KE, Toney GE, Haney CA, Hamilton PE. Occurrence of scirpentriol and its seven acetylated derivatives in culture extracts of Fusarium sambucinum NRRL 13495. J Food Prot 1989;52:871–6.Google Scholar
  4. 4.
    Hasan HAH. Phytotoxicity of pathogenic fungi and their mycotoxins to cereal seedling viability. Mycopathologia 1999;148:149–55.PubMedGoogle Scholar
  5. 5.
    Dahleen LS, McCormick SP. Trichothecene toxin effects on barley callus and seedling growth. Cereal Res Commun 2001;29:115–20.Google Scholar
  6. 6.
    Thompson WL, Wannemacher RW. Structure-function relationships of 12, 13-Epoxytrichothecene mycotoxins in cell culture: comparison to whole animal lethality. Toxicon 1986;24:985–94.PubMedGoogle Scholar
  7. 7.
    Rio B, Lautraite S, Parent-Massin D. In vitro toxicity of trichothecenes on human erythroblastic progenitors. Hum Exp Toxicol 1997;16:673–9.PubMedGoogle Scholar
  8. 8.
    Lee DH, Park T, Kim HW. Induction of apopoptosis by disturbing mitochondrial-membrane potential and cleaving PARP in Jurkat T cells through treatment with acetoxyscirpentriol mycotoxins. Biol Pharm Bull 2006; 29:648–54.PubMedGoogle Scholar
  9. 9.
    Madhyastha MS, Marquardt RR, Masi A, Borsa J, Frolich AA. Comparison of toxicity of different mycotoxins to several species of bacteria and yeasts: Use of Bacillus brevis in a disc diffusion assay. J Food Protect 1994;57:48–53.Google Scholar
  10. 10.
    Engler KH, Coker RD, Evans IH. A colorimetric technique for detecting trichothecenes and assessing relative potencies. Appl Environ Microbiol 1999;65:1854–7.PubMedGoogle Scholar
  11. 11.
    Ueno Y. General toxicology. In: UenoY, editor. Developments in food science. IV Trichothecenes—Chemical, biological and toxicological aspects. Tokyo, Amsterdam: Kodansha/Elsevier; 1983. p. 135–46.Google Scholar
  12. 12.
    Richardson KE, Hamilton PE. Comparative toxicity of scirpentriol and its acetylated derivatives. Poultry Sci 1990;69:397–402.Google Scholar
  13. 13.
    Dänicke S. Prevention and control of mycotoxins in the poultry production chain: a European view. Worlds Poult Sci J 2002;58:451–74.Google Scholar
  14. 14.
    Smith TK. Recent advances in the understanding of Fusarium trichothecene mycotoxicoses. J Anim Sci 1992;70:3989–93.PubMedGoogle Scholar
  15. 15.
    Desjardins AE, Hohn TM, McCormick SP. Trichothecene biosynthesis in Fusarium species: chemistry, genetics and significance. Microbiol Rev 1993;57:595–604.PubMedGoogle Scholar
  16. 16.
    Desjardins AE, Hohn TM, McCormick SP, Proctor RH. Biochemistry and regulation of trichothecene toxin biosynthesis in Fusarium. Curr Top Plant Physiol 1995;15:211–9.Google Scholar
  17. 17.
    Kimura M, Fujimura M, Hamamoto H, Tokai T, Yamaguchi I. Molecular biology and genetics of trichothecene mycotoxin producers: progress and perspective. In: Fierro F, Martin JF, editors. Microbial secondary metabolites: biosynthesis, genetics and regulation; 2002. p. 211–225.Google Scholar
  18. 18.
    Hohn ThM, McCormick SP, Desjardins AE. Evidence for a gene cluster involving trichothecene-pathway biosynthetic genes in Fusarium sporotrichioides. Curr Genet 1993;24:291–5.PubMedGoogle Scholar
  19. 19.
    Perkowski J, Kiecana I, Stachowiak J, Basinski T. Natural occurrence of scirpentriol in cereals infected by Fusarium species. Food Addit Contam 2003;20:572–8.PubMedGoogle Scholar
  20. 20.
    Snyder AP. Qualitative, quantitative and technological aspects of the trichothecene mycotoxins. J Food Protect 1986;49:544–69.Google Scholar
  21. 21.
    Langseth W, Rundberget T. Instrumental methods for determination of nonmacrocyclic trichothecens in cereals, foodstuffs and cultures. J Chromatogr A 1998;815:103–21.Google Scholar
  22. 22.
    Samar MM, Resnik SL. Analytical methods for trichothcenes surveillance—an overview over the period 1990–2000. Food Sci Technol Int 2002;8:257–68.Google Scholar
  23. 23.
    Krska R, Welzig E, Berthiller F, Molinelli A, Mizaikoff B. Advances in the analyis of mycotoxins and its quality assurance. Food Addit Contam 2005;22:345–53.PubMedGoogle Scholar
  24. 24.
    Candlish AAG, Smith JE, Stimson WH. Monoclonal antibody technology for mycotoxins. Biotechnol Adv 1989;7:401–18.PubMedGoogle Scholar
  25. 25.
    Klaffer U, Märtlbauer E, Terplan G. Development of a sensitive enzyme-linked immunosorbent assay for the detection of diacetoxyscirpenol. Int J Food Microbiol 1988;6:9–17.PubMedGoogle Scholar
  26. 26.
    Langseth W, Bernhof A, Rundberget T, Kosiak B, Gareis M. Mycotoxin production and cytotoxicity of Fusarium strains isolated from Norwegian cereals. Mycopathologia 1999;144:103–13.Google Scholar
  27. 27.
    Langseth W, Rundberget T. The occurrence of HT-2 toxin and other trichothecenes in Norwegian cereals. Mycopathologia 1999;147:157–65.PubMedGoogle Scholar
  28. 28.
    Perkowski J, Basinski T. Natural contamination of oat with group A trichothecene mycotoxins in Poland. Food Addit Contam 2002;19:478–82.PubMedGoogle Scholar
  29. 29.
    Perkowski J, Kiecana I, Kaczmarek Z. Natural occurrence and distribution of Fusarium toxins in contaminated barley cultivars. Eur J Plant Pathol 2003;109:331–9.Google Scholar
  30. 30.
    Schwadorf K, Müller H-M. Determination of trichothecenes in cereals by gaschromatography with ion trap detection. Chromatographia 1991;32:137–42.Google Scholar
  31. 31.
    Schollenberger M, Lauber U, Terry Jara H, Suchy S, Drochner W, Müller HM. Determination of eight trichothecenes by gas chromatography mass-spectrometry after sample clean-up by a two-stage solid phase extraction. J Chromatogr A 1998;815:123–32.PubMedGoogle Scholar
  32. 32.
    Smoragiewicz W, Cossette B, Boutard A, Krzystyniak K. Trichothecene mycotoxins in the dust of ventilation systems in office buildings. Int Arch Occup Environ Health 1993;65:113–7.PubMedGoogle Scholar
  33. 33.
    Tuomi T, Reijula K, Johannson T, Hemminki K, Hintikka E-L, Lindroos O, Kalso S, Koukila-Kähkölä P, Mussalo-Rahamaa H, Haahtela T. Mycotoxins in crude building materials from water-damaged buildings. Appl Environ Microbiol 2000;66:1899–904.PubMedGoogle Scholar
  34. 34.
    Hussein HM, Franich RA, Baxter M, Andrew IG. Naturally occurring Fusarium toxins in New Zealand maize. Food Addit Contam 1989;6:49–58.PubMedGoogle Scholar
  35. 35.
    El Maghraby OMO. Mycotoxins and mycoflora of rice in Egypt with special reference to trichothecenes production and control. J Nat Tox 1996;5:49–59.Google Scholar
  36. 36.
    Desjardins AE, Plattner RD. Trichothecene toxin production by strains of Gibberella pulicaris (Fusarium sambucinum) in liquid culture and in potato tubers. Agric Food Chem 1989;37:388–92.Google Scholar
  37. 37.
    Latus-Zietkiewicz D, Perkowski J, Chelkowski J. Mycotoxin production, pathogenicity and toxicity of Fusarium species isolated from potato tubers with dry rot injuries. Microbiol Alim Nutr 1995;13:87–100.Google Scholar
  38. 38.
    Jacobsen BJ, Harlin KS, Swanson SP, Lambert RJ, Beasley VR, Sinclair JB. Occurrence of fungi and mycotoxins associated with field mold damaged soybeans in the Midwest. Plant Dis 1995;79:86–9.CrossRefGoogle Scholar
  39. 39.
    Campbell H, Choo TM, Vigier B, Underhill L. Mycotoxins in barley and oat samples from eastern Canada. Can J Plant Sci 2000;80:977–80.Google Scholar
  40. 40.
    Campbell H, Choo TM, Vigier B, Underhill L. Comparison of mycotoxin profiles among cereal samples from eastern Canada. Can J Bot 2002;80:526–32.Google Scholar
  41. 41.
    Berthiller F, Schuhmacher R, Buttinger G, Krska R. Rapid simultaneous determination of major type A-␣and B-trichothecenes as well as zearalenone in maize by high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A; 2005;1062(2):209–16.Google Scholar
  42. 42.
    Milanez TV, Valente-Soares LM, Baptista GG. Occurrence of trichothecene mycotoxins in Brazilian corn-based food products. Food Control 2006;17:293–8.Google Scholar
  43. 43.
    Abramson D, Mills JT, Marquardt RR, Frohlich AA. Mycotoxins in fungal contaminated samples of animal feed from Western Canada, 1982–1994. Can J Vet Res 1997;61:49–52.PubMedGoogle Scholar
  44. 44.
    Molto G, Samar MM, Resnik S, Martinez EJ, Pacin A. Occurrence of trichothecenes in Argentinean beer: a preliminary exposure assessment. Food Addit Contam 2000;17:809–13.PubMedGoogle Scholar
  45. 45.
    Ellner FM. Mycotoxins in potato tubers infected by Fusarium sambucinum. Mycotoxin Res 2002;18:57–61.Google Scholar
  46. 46.
    Furlong EB, Valente Soares LM, Campos Lasca C, Kohara EY. Mycotoxins and fungi in wheat harvested during 1990 in test plots in the state of Sao Paulo, Brazil. Mycopathologia 1995;131:185–90.PubMedGoogle Scholar
  47. 47.
    Schothorst RC, Jekel AA. Determination of trichothecenes in wheat by capillary gas chromatography with flame ionisation detection. Food Chem 2001;73:111–7.Google Scholar
  48. 48.
    Abramson D, Clear RM, Nowicki TW. Fusarium species and trichothecene mycotoxins in suspect samples of 1985 Manitoba wheat. Can J Plant Sci 1987;67:611–19.CrossRefGoogle Scholar
  49. 49.
    Scudamore KA, Nawaz S, Hetmanski MT. Mycotoxins in ingredients of animal feeding stuffs: II. Determination of mycotoxins in maize and maize products. Food Addit Contam 1998;15:30–55.PubMedGoogle Scholar
  50. 50.
    Schollenberger M, Müller HM, Rüfle M, Suchy S, Planck S, Drochner W. Survey of Fusarium toxins in foodstuffs of plant origin marketed in Germany. Int J Food Microbiol 2005;97:317–26.PubMedGoogle Scholar
  51. 51.
    Mirocha CJ, Pathre SV, Schauerhamer B, Christensen CM. Natural occurrence of Fusarium toxins in feedstuffs. Appl Environ Microbiol 1976;32:553–6.PubMedGoogle Scholar
  52. 52.
    Tanaka T, Yoneda A, Inoue S, Sugiura Y, Ueno Y. Simultaneous determination of trichothecene mycotoxins and zearalenone in cereals by gas chromatography-mass spectrometry. J Chromatogr A 2000;882:23–8.PubMedGoogle Scholar
  53. 53.
    Clear RM, Nowicki TW, Daun JK. Soybean seed discoloration by Alternatia spp and Fusarium spp effects on quality and production of fusariotoxins. Can J Plant Pathol 1989;11:308–12.CrossRefGoogle Scholar
  54. 54.
    Lombaert GA. Methods for the determination of deoxynivalenol and other trichothecenes in food. Adv Exp Med Biol 2002;504:141–53.PubMedGoogle Scholar
  55. 55.
    Scudamore KA, Nawaz S, Hetmanski MT, Rainbird SC. Mycotoxins in ingredients of animal feeding stuffs: III. Determination of mycotoxins in rice bran. Food Addit Contam 1998;15:185–94.PubMedGoogle Scholar
  56. 56.
    Onji Y, Aoki Y, Tani N, Umebayashi K, Kitada Y, Dohi Y. Direct analysis of several Fusarium mycotoxins in cereals by capillary gas chromatography-mass spectrometry. J Chromatogr A 1998;815:59–65.PubMedGoogle Scholar
  57. 57.
    Maycock R, Utley D. Analysis of some trichothecene mycotoxins by liquid chromatography. J Chromatogr 1985;347:429–33.PubMedGoogle Scholar
  58. 58.
    Yagen B, Sintov A, Bialer M. New sensitive thin-layer chromatographic-high-performance liquid chromatographic method for detection of trichothecene mycotoxins. J Chromatogr 1986;356:195–201.PubMedGoogle Scholar
  59. 59.
    Mateo JJ, Mateo R, Hinojo MJ, Llorens A, Jimenéz M. Liquid chromatographic determination of toxigenic secondary metabolites produced by Fusarium strains. J Chromatogr A 2002;955:245–56.PubMedGoogle Scholar
  60. 60.
    Dall´Asta C, Galaverna G, Biancardi A, Gasparini M, Sforza S, Dossena A, Marchelli R. Simultaneous liquid chromatography-fluorescence analysis of type A and type B trichothecenes as fluorescent derivatives via reaction with coumarin-3 carbonyl chloride. J Chromatogr A 2004;1047:241–7.Google Scholar
  61. 61.
    Sforza S, Dall´Asta Ch, Marchelli R. Recent advances in mycotoxin determination in food and feed by hyphenated chromatographic techniques/mass spectrometry. Mass Spectrom Rev 2006;25:54–76.PubMedGoogle Scholar
  62. 62.
    Zöllner P, Mayer-Helm B. Trace mycotoxin analysis in␣complex biological and food matrices by liquid chromatography-atmospheric pressure ionisation mass spectrometry. J Chromatogr A 2006;1136:123–69.PubMedGoogle Scholar
  63. 63.
    Pettersson H, Langseth W. Intercomparison of trichothecene analysis and feasibility to produce certified calibrants and reference material. Final report I, Method studies. Final report II, Homogeneity and stability studies, Final Intercomparison. BCR Information, Project Report EUR 20285/1 + 2 EN. 2002.Google Scholar
  64. 64.
    Berger U, Oehme M, Kuhn F. Quantitative determination and structure elucidation of type A and type b-trichothecenes by HPLC/Ion Trap Multiple Mass Spectrometry. J Agric Food Chem 1999;47:4240–5.PubMedGoogle Scholar
  65. 65.
    Razzazi-Fazeli E, Rabus B, Cecon B, Böhm J. Simultaneous quantification of A-trichothecene mycotoxins in grains using liquid chromatography-atmospheric pressare chemical ionisation mass spectrometry. J Chromatogr A 2002;968:129–42.PubMedGoogle Scholar
  66. 66.
    Dall´Asta C, Sforza S, Galaverna G, Dossena A, Marchelli R. Simultaneous detection of type A and type B trichothecenes in cereals by liquid chromatography-electrospray ionization mass spectrometry using NaCl as cationization agent. J Chromatogr A 2004;1054:389–95.Google Scholar
  67. 67.
    Cavaliere Ch, Foglia P, Pastorini E, Samperi R, Lagana A. Development of a multiresidue method for analysis of major Fusarium mycotoxins in corn meal using liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Sp 2005;19:2085–93.Google Scholar
  68. 68.
    Klötzel M, Gutsche B, Lauber U, Humpf HU. Determination of 12 type A and B trichothecenes in cereals by Liquid Chromatography-Electrospray ionization tandem mass spectrometry. J Agric Food Chem 2005;53:8904–10.PubMedGoogle Scholar
  69. 69.
    Marasas WFO, Nelson PE, Tousson TA. Toxigenic Fusarium species. identity and mycotoxicology. University Park and London: The Pennsylvania State University Press; 1984.Google Scholar
  70. 70.
    Marasas WFO. Toxigenic fusaria. In: Smith JE, Henerson RS, editors. Mycotoxins and animal foods. Boca Raton: CRC Press; 1991. p. 119–39.Google Scholar
  71. 71.
    Pitt JI, Hocking AD. Fungi and food spoilage. Gaithersburg, Maryland: Aspen Publ. Inc.; 1999.Google Scholar
  72. 72.
    Leslie JF, Summerell S. The Fusarium laboratory manual. Blackwell Publishing, 2006.Google Scholar
  73. 73.
    Abramson D, Clear RM, Smith DM. Trichothecene production by Fusarium spp isolated from Manitoba grain. Can J Plant Pathol 1993;15:147–52.CrossRefGoogle Scholar
  74. 74.
    Mateo JJ, Mateo R, Jimenez M. Accumulation of type A trichothecenes in maize, wheat and rize by Fusarium sporotrichiodes isolates under diverse culture conditions. Int J Food Microbiol 2002;72:115–23.PubMedGoogle Scholar
  75. 75.
    Park JJ, Chu FS. Immunochemical analysis of trichothecenes produced by various fusaria. Mycopathologia 1993;121:179–92.Google Scholar
  76. 76.
    McLachlan A, Shaw KJ, Hocking AD, Pitt JI, Nguyen THL. Production of trichothecene mycotoxins by Australian Fusarium species. Food Addit Contam 1992;9:631–7.PubMedGoogle Scholar
  77. 77.
    Thrane U, Adler A, Clasen P-E, Galvano F, Langseth W, Lew H, Logrieco A, Nielsen KF, Ritieni A. Diversity in metabolite production by Fusarium langsethiae, Fusarium poae, and Fusarium sporotrichioides. Int J Food Microbiol 2004;95:257–66.PubMedGoogle Scholar
  78. 78.
    Salas B, Steffenson BJ, Casper HH, Tacke B, Prom LK, Fetch TG Jr, Schwarz PR. Fusarium species pathogenic to barley and their associated mycotoxins. Plant Dis 1999;83:667–74.Google Scholar
  79. 79.
    Sugiura Y, Fukasaku K, Tanaka T, Matsui Y, Ueno Y. Fusarium poae and Fusarium crookwellense, fungi responsible for the natural occurrence of nivalenol in Hokkaido. Appl Environ Microbiol 1993;59:3334–8.PubMedGoogle Scholar
  80. 80.
    Lauren DR, Sayer ST, di Menna ME. Trichothecene production by Fusarium species isolated from grain and pasture throughout New Zealand. Mycopathologia 1992; 120:167–76.Google Scholar
  81. 81.
    Liu W, Sundheim L, Langseth W. Trichothecene production and the relationship to vegetative compatibility groups in Fusarium poae. Mycopathologia 1998; 140:105–14.Google Scholar
  82. 82.
    Torp M, Langseth W. Production of T-2 toxin by a Fusarium resembling Fusarium poae. Mycopathologia 1999;147:89–96.PubMedGoogle Scholar
  83. 83.
    Hussein HM, Baxter M, Andew IG, Franich RA. Mycotoxin production by Fusarium species isolated from New Zealand maize fields. Mycopathologia 1991;113:35–40.PubMedGoogle Scholar
  84. 84.
    Molto GA, Gonzalez HHL, Resnik SL, Pereyra Gonzalez A. Production of trichothecenes and zearalenone by isolates of Fusarium spp from Argentinian maize. Food Addit Contam 1997;14:263–8.PubMedGoogle Scholar
  85. 85.
    Morrison E, Rundberget T, Kosiak B, Aastveit AH, Bernhoft A. Cytotoxicity of trichothecenes and fusarochromanone produced by Fusarium equiseti strains isolated from Norwegian cereals. Mycopathologia 2001; 153:49–56.Google Scholar
  86. 86.
    Greenhalgh R, Miller JD, Neish GA, Schiefer HB. Toxigenic potential of some Fusarium isolates from Southeast Asia. Appl Environ Microbiol 1985;50:550–2.PubMedGoogle Scholar
  87. 87.
    Kosiak EB, Holst-Jensen A, Rundberget T, Jaen MTG, Torp M. Morphological, chemical and molecular differentiation of Fusarium equiseti isolated from Norwegian cereals. Int J Food Microbiol 2005;99:195–206.PubMedGoogle Scholar
  88. 88.
    Bosch U, Mirocha CJ. Toxin production by Fusarium species from sugar beets and natural occurrence of zearalenone in beets and beet fibers. Appl Environ Microbiol 1992;58:3233–9.PubMedGoogle Scholar
  89. 89.
    Hestbjerg H, Nielsen KF, Thrane U, Elmholt S. Production of trichothecenes and other secondary metabolites by Fusarium culmorum and Fusarium equiseti on common laboratory media and a soil organic matter agar: an ecological interpretation. J Agric Food Chem 2002; 50:7593–9.PubMedGoogle Scholar
  90. 90.
    Nielsen KF, Thrane U. Fast methods for screening of trichothecenes in fungal cultures using gas chromatography-tandem mass spectrometry. J Chromatogr A 2001;929:75–87.PubMedGoogle Scholar
  91. 91.
    Rabie CJ, Sydenham EW, Thiel PG, Lübben A, Marasas WFO. T-2 toxin production by Fusarium acuminatum isolated from oats and barley. Appl Environ Microbiol 1986;52:594–6.PubMedGoogle Scholar
  92. 92.
    Wing N, Bryden WL, Lauren DR, Burgess LW. Toxigenicity of Fusarium species and subspecies in section Gibbosum from different regions of Australia. Mycol Res 1993;97:1441–6.Google Scholar
  93. 93.
    Mulè G, D´Ambrosio D, Logrieco A, Bottalico A. Toxicity of mycotoxins of Fusarium sambucinum for feeding in Galleria mellonella. Entomol Exp Appl 1992;62:17–22.Google Scholar
  94. 94.
    Altomare C, Logrieco A, Bottalico A, Mulé G, Moretti A, Evidente A. Production of type A trichothecenes and enniatin B by Fusarium sambucinum Fuckel sensu lato. Mycopathologia 1995;129:177–81.PubMedGoogle Scholar
  95. 95.
    Thrane U, Hansen U. Chemical and physiological characaterization of taxa in the Fusarium sambucinum complex. Mycopathologia 1995;129:183–90.PubMedGoogle Scholar
  96. 96.
    Beremand MN, Desjardins AE, Hohn TM, VanMiddlesworth FL. Survey of Fusarium sambucinum (Gibberella pulicaris) for mating type, trichothecene production and other selected trais. Phytopathology 1991;81:1452–8.Google Scholar
  97. 97.
    Jelen HH, Mirocha CJ, Wasowicz E, Kaminski E. Production of volatile sesquiterpenes by Fusarium sambucinum strains with different abilities to synthesize trichothecenes. Appl Environ Microbiol 1995;61:3815–20.PubMedGoogle Scholar
  98. 98.
    Steyn PS, Vleggaar R, Rable CJ, Kriek NPJ, Harrington JS. Trichothecene mycotoxins from Fusarium sulphureum. Phytochemistry 1978;17:949–51.Google Scholar
  99. 99.
    Sanson DR, Corley DG, Barnes L, Scarles S, Schlemper EO, Tempesta M. New mycotoxins from Fusarium sambucinum. J Org Chem 1989;54:4313–8.Google Scholar
  100. 100.
    Vesonder RF, Golinski P, Plattner R, Zietkiewicz DL. Mycotoxin formation by different geographic isolates of Fusarium crookwellense. Mycopathologia 1991;113: 11–4.PubMedGoogle Scholar
  101. 101.
    Mirocha CJ, Pawlowsky RJ, Zhu TX, Lee YW. Chemistry and biological activity of Fusarium roseum mycotoxins. In: Lacey J, editor. Trichothecenes and other mycotoxins. Chichester, UK: John Wiley and Sons, Ltd.; 1985. p. 291–305.Google Scholar
  102. 102.
    Nelson PE, Tousson TA, Marasas WFO. Fusarium species: an illustrated manual for identification. University Park, Pa.: The Pennsylvania State University Press; 1983.Google Scholar
  103. 103.
    Burgess LW, Liddell CM. Laboratory manual for Fusarium research. Sydney: University of Sydney; 1983.Google Scholar
  104. 104.
    Burgess LW, Liddell CM, Summerell BA. Laboratory manual for Fusarium research. Fusarium Research Laboratory, Department of Plant Pathology and Agricultural Entomology, University of Sydney, Sydney, Australia, 1988.Google Scholar
  105. 105.
    Samson RA, Hoekstra ES, Frisvad JC, Filtenborg O. Introduction to food-borne fungi. 4th ed. Baarn/Wageningen, Centralbureau voor Schimmelcultures, 1995.Google Scholar
  106. 106.
    Samson RA, Hoekstra ES, Frisvad JC, Filtenborg O. Introduction to food-and airborne Fungi, 6th ed. Centraalbureau voor Schimmelcultures, Utrecht, 2000.Google Scholar
  107. 107.
    Gerlach W, Nirenberg H. The genus Fusarium- a pictorial Atlas, Vol 209. Berlin: Mitt Biol Bundesanstalt Forstwirt; 1982.Google Scholar
  108. 108.
    Gonzalez HHL, Resnik SL, Boca RT, Marasas WFO. Mycoflora of Argentinian corn in the main production area in 1990. Mycopathologia 1995;130:29–36.PubMedGoogle Scholar
  109. 109.
    Hestbjerg H, Elmholt S, Thrane U, Jensen UB. A resource-saving method for isolation of Fusarium and other fungi from individual soil particles. Myc Res 1999;103:1545–8.Google Scholar
  110. 110.
    Nirenberg HI. Morphological differentiation of Fusarium sambucinum Fuckel senso strictu, F. torulosum (Berk. & Curt.) Nirenberg comb. nov. and F. venenatum Nirenberg sp. nov. Mycopathologia 1995;129:131–41.PubMedGoogle Scholar
  111. 111.
    Abouzied M, Pestka JJ. Fusarenon-X and nivalenol production by Gibberella zeae in liquid and rice cultures. Mycopathologia 1986;96:19–24.Google Scholar
  112. 112.
    Park JJ, Chu FS. Partial purification and characterization of an esterase from Fusarium sporotrichioides. Nat Toxins 1996;4:108–16.PubMedCrossRefGoogle Scholar
  113. 113.
    Müller HM. Gluconate accumulation and enzyme activities with extremely nitrogen-limited cultures of Aspergillus niger. Arch Microbiol 1986;144:151–7.PubMedGoogle Scholar
  114. 114.
    Pettersson H. Trichothecene occurrence in European Cereals—A review. Proceedings of the International Seminar on Fusarium—Mycotoxins, taxonomy and pathogenicity, May 9–13. 1995, Marina Franca, Italy.Google Scholar
  115. 115.
    Clear RM, Patrick SK, Gaba D, Abramson D, Smith DM. Prevalence of fungi and fusariotoxins on hard red spring and amber durum wheat seed from western Canada, 2000 to 2002. Can J Plant Pathol 2005;27:528–40.CrossRefGoogle Scholar
  116. 116.
    Quiroga N, Resnik S, Pacin A, Martinez E, Pagana A, Riccobene I, Neira S. Natural occurrence of trichothecenes and zearalenone in Argentine wheat. Food Control 1995, 6:201–4.Google Scholar
  117. 117.
    Kamimura H, Nishijima M, Yasuda K, Saito K, Ibe A, Nagayama T, Ushiyama H, Naoi Y. Simultaneous detection of several Fusarium mycotoxins in cereals, grains and foodstuffs. J AOAC 1981;64:1067–73.Google Scholar
  118. 118.
    Directorate —General Health and Consumer Protection of the European Commission—Reports on tasks for scientific cooperation, report of experts, April 2003. Collection of occurrence data of Fusarium toxins in food and assessment of dietary intake by the population of EU member states (SCOOP TASK 3.2.10.). http://europaeu. int/comm/food/fs/scoop task3210pdf 2003.Google Scholar
  119. 119.
    Müller HM, Reimann J, Schumacher U, Schwadorf K. Fusarium toxins in wheat harvested during six years in an area of southwest Germany. Nat Toxins 1997;5:24–30.PubMedGoogle Scholar
  120. 120.
    Müller HM, Reimann J, Schumacher U, Schwadorf K. Further survey of the occurrence of Fusarium toxins in wheat grown in southwest Germany. Arch Anim Nutr 2001;54:173–82.CrossRefGoogle Scholar
  121. 121.
    Schollenberger M, Müller HM, Rüfle M, Suchy S, Plank S, Drochner W. Natural occurrence of 16 Fusarium toxins in grains and feedstuffs of plant origin from Germany. Mycopathologia 2006;161:43–52.PubMedGoogle Scholar
  122. 122.
    Curtui V, Usleber E, Dietrich R, Lepschy J, Märtlbauer E. A survey on the occurrence of mycotoxins in wheat and maize from western Romania. Mycopathologia 1998; 143:97–103.PubMedGoogle Scholar
  123. 123.
    Clear RM, Patrick SK, Nowicki T, Gaba D, Edney M, Babb JC. The effect of hull removal and pearling on Fusarium species and trichothecenes in hulless barley. Can J Plant Sci 1997;77:161–6.Google Scholar
  124. 124.
    Müller HM, Reimann J, Schumacher U, Schwadorf K. Natural occurrence of Fusarium toxins in barley harvested during 5 years in an area of southwest Germany. Mycopathologia 1997;137:185–92.PubMedGoogle Scholar
  125. 125.
    Müller HM, Reimann J, Schumacher U, Schwadorf K. Natural occurrence of Fusarium toxins in oats harvested during five years in an area of southwest Germany. Food Addit Contam 1998;15:801–6.PubMedGoogle Scholar
  126. 126.
    Tseng TC, Yuan GF, Tseng J, Shaw EW, Mirocha CJ. Natural occurrence of Fusarium mycotoxins in grains and feeds in Taiwan. In: Lacey J, editor. Trichothecenes and other mycotoxins. John Wiley and Sons, Chichester; 1985. p. 61–71.Google Scholar
  127. 127.
    Keblys M, Flaoyen A, Langseth W. The occurrence of type A and B trichothecenes in Lithuanian cereals. Acta Agric Scand Sect B-Soil Plant Sci 2000;50:155–60.Google Scholar
  128. 128.
    Labuda R, Parich A, Berthiller F, Tancinova D. Incidence of trichothecenes and zearalenone in poultry feed mixtures from Slovakia. Int J Food Microbiol 2005;105:19–25.PubMedGoogle Scholar
  129. 129.
    Schollenberger M, Müller H-M, Rüfle R, Terry-Jara H, Suchy S, Plank S, Drochner W. Natural occurrence of 16 Fusarium toxins in soy food marketed in Germany. Int J Food Microbiol 2007;113:142–6.PubMedGoogle Scholar
  130. 130.
    Nordby K-Ch, Halstensen AS, Elen O, Clasen P-E, Langseth W, Kristensen P, Eduard W. Trichothecene mycotoxins and their determinants in settled dust related to grain production. Ann Agr Env Med 2004;11:75–83.Google Scholar
  131. 131.
    Chakrabarti DK, Ghosal S. Occurrence of free and conjugated 12,13-epoxytrichothecenes and zearalenone in banana fruits infected with Fusarium moniliforme. Appl Environ Microbiol 1986;51:217–9.PubMedGoogle Scholar
  132. 132.
    Lauren DR, Agnew MP, Smith WA, Sayer ST. A survey of the natural occurrence of Fusarium mycotoxins in cereals grown in New Zealand in 1986–1989. Food Addit Contamin 1991;8:599–605.Google Scholar
  133. 133.
    Lauren DR, Agnew MP. Multitoxin screening method for Fusarium mycotoxins in grains. J Agric Food Chem 1991;39:502–7.Google Scholar
  134. 134.
    Lafont P, Girard T, Payen J, Sarfati J, Gaillardin M. Contamination de pommes de terre de consommation par des Fusariotrichothecenes. Microbiol Alim Nutr 1983; 1:147–52.Google Scholar
  135. 135.
    DeNijs M, Rombouts F, Notermans S. Fusarium molds and their mycotoxins. J Food Safety 1996;16:15–58.Google Scholar
  136. 136.
    Chelkowski J. Toxigenicity of Fusarium species causing dry rot of potato tubers. In: Chelkowski J, editor. Fusarium: mycotoxins, taxonomy and pathology. Topics in Secondary metabolism 2. Elsevier, 1989.Google Scholar
  137. 137.
    El-Banna A, Scott PM, Lau PY, Sakuma T, Platt HW, Campbell V. Formation of trichothecenes by Fusarium solani var coeruleum and Fusarium sambucinum in potatoes. Appl Environ Microbiol 1984;47:1169–71.PubMedGoogle Scholar
  138. 138.
    Beardall J, Miller D. Natural occurrence of mycotoxins other than aflatoxin in Africa, Asia and South America. Mycotoxin Research 1994;10:21–40.Google Scholar
  139. 139.
    World Health Organization (WHO) (1998). Global Environment Monitoring System/Food Contamination Monitoring and Assessment Programme (GEMS/Food) Regional diets. WHO/FSF/FOS/98.3.Google Scholar
  140. 140.
    Divi RL, Chang HC, Doerge DR. Anti-thyroid isoflavones from soybean. Biochem Pharmacol 1997;54:1087–96.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Margit Schollenberger
    • 1
  • Winfried Drochner
    • 1
  • Hans-Martin Müller
    • 1
  1. 1.Institute of Animal NutritionHohenheim UniversityStuttgartGermany

Personalised recommendations