Advertisement

Mycopathologia

, 163:97 | Cite as

Characterization of AFLAV, a Tf1/Sushi retrotransposon from Aspergillus flavus

  • Sui-Sheng T. HuaEmail author
  • Alice S. Tarun
  • Sonal N. Pandey
  • Leo Chang
  • Perng-Kuang Chang
Article

Abstract

The plasmid, pAF28, a genomic clone from Aspergillus flavus NRRL 6541, has been used as a hybridization probe to fingerprint A. flavus strains isolated in corn and peanut fields. The insert of pAF28 contains a 4.5 kb region which encodes a truncated retrotransposon (AfRTL-1). In search for a full-length and intact copy of retrotransposon, we exploited a novel PCR cloning strategy by amplifying a 3.4 kb region from the genomic DNA of A. flavus NRRL 6541. The fragment was cloned into pCR®4-TOPO®. Sequence analysis confirmed that this region encoded putative domains of partial reverse transcriptase, RNase H, and integrase of the predicted retrotransposon. The two flanking long terminal repeats (LTRs) and the sequence between them comprise a putative full-length LTR retrotransposon of 7799 bp in length. This intact retrotransposon sequence is named AFLAV (A. flavus Retrotransposon). The order of the predicted catalytic domains in the polyprotein (Pol) placed AFLAV in the Tf1/sushi subgroup of the Ty3/gypsy retrotransposon family. Primers derived from AFLAV sequence were used to screen this retrotransposon in other strains of A. flavus. More than fifty strains of A. flavus isolated from different geological origins were surveyed and the results show that many strains have extensive deletions in the regions encoding the capsid (Gag) and Pol.

Keywords

aflatoxin Aspergillus flavus retrotransposon 

References

  1. 1.
    Marin I and Llorens C (2000). Ty3/Gypsy retrotransposons: description of new Arabidopsis thaliana elements and evolutionary perspectives derived from comparative genomic data. Mol Biol Evol 17: 1040–1049PubMedGoogle Scholar
  2. 2.
    Butler M, Goodwin T, Simpson M, Singh M and Poulter R (2001). Vertebrate LTR retrotransposons of the TF1/Sushi group. J Mol Evol 52: 260–274PubMedGoogle Scholar
  3. 3.
    Farman ML, Tosa Y, Nitta N and Leong SA (1996). MAGGY, a retrotransposon in the genome of the rice blast fungus Magnaporthe grisea. Mol Gen Genet 251: 665–674PubMedGoogle Scholar
  4. 4.
    Dobinson KF, Harris RE and Hamer JE (1993). Grasshopper, a long terminal repeat (LTR) retroelement in the phytopathogenic fungus Magnaporthe grisea. Mol Plant-Microbe Inter 6: 114–126Google Scholar
  5. 5.
    McHale MT, Roberts IN, Noble SM, Baeumont C, Whitehead MP, Seth D and Oliver RP (1992). CfT-I: an LTR-retrotransposon in Cladosporium fulvum, a fungal pathogen of tomato. Mol Gen Genet 233: 337–347CrossRefPubMedGoogle Scholar
  6. 6.
    Anaya N and Roncero MIG (1995). skippy, a retrotransposon from the fungal Fusarium oxysporum. Mol Gen Genet 249: 637–647CrossRefPubMedGoogle Scholar
  7. 7.
    Diolez A, Marches F, Fortini D and Brygoo Y (1995). Boty, a long-terminal-repeat retroelement in the phytopathogenic fungus Botrytis cinerea. Appl Environ Microbiol 61: 103–108 PubMedGoogle Scholar
  8. 8.
    Neuveglise C, Sarfati J, Latge J-P and Paris S (1996). Afut1, a retrotransposon-like element from Aspergillus fumigatus. Nucleic Acids Res 24: 1428–1434CrossRefPubMedGoogle Scholar
  9. 9.
    Murata HY (2000). A marY1, a member of the gypsy group of long terminal repeat retroelements from the ectomycorrhizal basidiomycete Tricholoma matsutake. Appl Environ Microbiol 66: 3642–3645CrossRefPubMedGoogle Scholar
  10. 10.
    Goodwin TJ and Poulter RT (2001). The diversity of retrotransposons in the yeast Cryptococcus neoformans. Yeast 18: 865–880CrossRefPubMedGoogle Scholar
  11. 11.
    Ellis WO, Smith JP, Simpson JP and Oldham JH (1991). Aflatoxin in food: occurrence, biosynthesis, effects on organisms, detection, and methods of control. Crit Rev Food Sci Nutr 30: 403–439CrossRefPubMedGoogle Scholar
  12. 12.
    Cotty PJ, Bayman DS, Egel DS and Elias KS (1994). Powell, K (eds) The Genus Aspergillus, pp 1–27. Plenum Press, New York, NYGoogle Scholar
  13. 13.
    McAlpin CE and Mannarelli B (1995). Construction and characterization of a DNA probe for distinguishing strains of Aspergillus flavus. Appl Environ Microbiol 61: 1068–1072PubMedGoogle Scholar
  14. 14.
    Okabura PA, Tibbot BK, Tarun AS, McAlpin CA and Hua SST (2003). Partial retrotransposon-like DNA sequence in the genomic clone of Aspergillus flavus, pAF28. Mycol Res 107: 841–846CrossRefGoogle Scholar
  15. 15.
    Adye J and Mateles RI (1964). Incorporation of labeled compounds into aflatoxins. Biochimica et Biophysica Acta 86: 418–420PubMedGoogle Scholar
  16. 16.
    Bingham PM and Zachar Z (1989). Retrotransposons and the FB transposons from Drosophila melanogaster. In: Berg, DE and Howe, MM (eds) Mobile DNA, pp 485–502. American Society for Microbiology, Washington DCGoogle Scholar
  17. 17.
    Nakayashiki H, Matsuo H, Chuma I, Ikeda K, Betsuyaku S, Kusaba M, Tosa Y and Mayama S (2001). Pyret, a Ty3/Gypsy retrotransposon in Magnaporthe grisea contains an extra domain between the nucleocapsid and protease domains. Nucleic Acids Res 29: 4106–4113CrossRefPubMedGoogle Scholar
  18. 18.
    Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W and Lipman DJ (1997). Gapped BLAST and PSI-BLAST: a new generation of protein search programs. Nucleic Acids Res 25: 3389–3402CrossRefPubMedGoogle Scholar
  19. 19.
    Malik HS and Eickbush TH (2001). Phylogenetic analysis of ribonuclease H domains suggests a late, chimeric origin of LTR retransposable elements and retroviruses. Genome Res 11: 1187–1197CrossRefPubMedGoogle Scholar
  20. 20.
    Malik HS and Eickbush TH (1999). Modular evolution of the integrase domain in the Ty3/Gypsy class of LTR retrotransposons. J Virol 73: 5186–5190PubMedGoogle Scholar
  21. 21.
    Koonin EV, Zhou S and Lucchesi JC (1995). The chromo superfamily: new members, duplication of the chromodomain and possible role in delivering transcription regulators to chromatin. Nucleic Acids Res 23: 4229–4233CrossRefPubMedGoogle Scholar
  22. 22.
    Curcio MJ and Morse RH (1996). Tying together integration and chromatin. Trends Genet 12: 436–438CrossRefPubMedGoogle Scholar
  23. 23.
    Nielsen ML, Hermansen TD and Aleksenko A (2001). A family of DNA repeats in Aspergillus nidulans has assimilated degenerated retrotransposons. Mol Genet Genomics 265: 883–887CrossRefPubMedGoogle Scholar
  24. 24.
    Paris S and Latge JP (2001). Afut2, a new family of degenerate gypsy-like retrotransposon from Aspergillus fumigatus. Med Mycol 39: 195–198PubMedGoogle Scholar
  25. 25.
    Bayman P and Cotty PJ (1993). Genetic diversity in Aspergillus flavus: association with aflatoxin production and morphology. Can J Bot 71: 23–31CrossRefGoogle Scholar
  26. 26.
    Wicklow DT, McAlpin CE and Platis CE (1998). Characterization of the Aspergillus flavus population within an Illinois maize field. Mycol Res 102: 263–268CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Sui-Sheng T. Hua
    • 1
    Email author
  • Alice S. Tarun
    • 1
    • 4
  • Sonal N. Pandey
    • 2
    • 5
  • Leo Chang
    • 1
  • Perng-Kuang Chang
    • 3
  1. 1.U.S. Department of Agriculture, Agricultural Research ServiceWestern Regional Research CenterAlbanyUSA
  2. 2.MJ Bioworks, Inc.South San FranciscoUSA
  3. 3.U.S. Department of Agriculture, Agricultural Research ServiceSouthern Regional Research CenterNew OrleansUSA
  4. 4.Seattle Biomedical Research InstituteSeattleUSA
  5. 5.Applied BiosystemsFoster CityUSA

Personalised recommendations