Mycopathologia

, 162:143 | Cite as

Impact of Aspergillus oryzae genomics on industrial production of metabolites

  • Keietsu Abe
  • Katusya Gomi
  • Fumihiko Hasegawa
  • Masayuki Machida
Article

Abstract

Aspergillus oryzae is used extensively for the production of the traditional Japanese fermented foods sake (rice wine), shoyu (soy sauce), and miso (soybean paste). In recent years, recombinant DNA technology has been used to enhance industrial enzyme production by A. oryzae. Recently completed genomic studies using expressed sequence tag (EST) analyses and whole-genome sequencing are quickly expanding the industrial potential of the fungus in biotechnology. Genes that have been newly discovered through genome research can be used for the production of novel valuable enzymes and chemicals, and are important for designing new industrial processes. This article describes recent progress of A . oryzae genomics and its impact on industrial production of enzymes, metabolites, and bioprocesses.

Keywords

Aspergillus oryzae biodegradable plastic cutinase DNA microrray enzyme EST genome hydrophobin industry metabolite 

References

  1. 1.
    FAO/WHO 1987. Committee on Food Additives. 31Google Scholar
  2. 2.
    Machida, M 2002Progress of Aspergillus oryzae genomicsAdv Appl Microbiol.5181106PubMedCrossRefGoogle Scholar
  3. 3.
    Gomi, K, Iimura, Y, Hara, S 1987Integrative transformation of␣Aspergillus oryzae with a plasmid containing the Aspergillus nidulans argB geneAgric Biol Chem5125492555Google Scholar
  4. 4.
    Christensen, T, Woldike, H, Boel, E, Mortense, SB, Hjortshoj, K, Thim, L, Hansen, MT 1988High level expression recombinant genes in Aspergillus oryzaeBiotechnology614191422CrossRefGoogle Scholar
  5. 5.
    Ward, PP, Lo, J-Y, Duke, M, May, GS, Headon, DR, Connelly, OM 1992Production of biologically active recombinant human lactoferrin in Aspergillus oryzaeBiotechnology10784789PubMedCrossRefGoogle Scholar
  6. 6.
    Tsuchiya, K, Gomi, K, Kitamoto, K, Kumagai, C, Tamura, G 1992Secretion of calf chymosin from the filamentous fungus Aspergillus oryzaeAppl Microbiol Biotechnol40327332Google Scholar
  7. 7.
    Machida, M, Asai, K, Sano, M, Tanaka, T, Kumagai, T, Terai, G, Kusumoto, K, Arima, T, Akita, O, Kashiwagi, Y, Abe, K, Gomi, K, Horiuchi, H, Kitamoto, K, Kobayashi, T, Takeuchi, M, Denning, DW, Galagan, JE, Nierman, WC, Yu, J, Archer, DB, Bennett, JW, Bhatnagar, D, Cleveland, TE, Fedorova, ND, Gotoh, O, Horikawa, H, Hosoyama, A, Ichinomiya, M, Igarashi, R, Iwashita, K, Juvvadi, PR, Kato, M, Kato, Y, Kin, T, Kokubun, A, Maeda, H, Maeyama, N, Maruyama, J, Nagasaki, H, Nakajima, T, Oda, K, Okada, K, Paulsen, I, Sakamoto, K, Sawano, T, Takahashi, M, Takase, K, Terabayashi, Y, Wortman, JR, Yamada, O, Yamagata, Y, Anazawa, H, Hata, Y, Koide, Y, Komori, T, Koyama, Y, Minetoki, T, Suharnan, S, Tanaka, A, Isono, K, Kuhara, S, Ogasawara, N, Kikuchi, H 2005Genome sequencing and analysis of Aspergillus oryzaeNature42811571161CrossRefGoogle Scholar
  8. 8.
    Maeda, H, Sano, M, Maruyama, Y, Tanno, T, Akao, T, Totsuka, Y, Endo, M, Sakurada, R, Yamagata, Y, Machida, M, Akita, O, Hasegawa, F, Abe, K, Gomi, K, Nakajima, T, Iguchi, Y 2004Transcriptional analysis of genes for energy catabolism and hydrolytic enzymes in the filamentous fungus Aspergillus oryzae using cDNA microarrays and expressed sequence Tags (ESTs)Appl Microbiol Biotechnol657483PubMedCrossRefGoogle Scholar
  9. 9.
    Yu J, Proctor RH, Brown DW, Abe K, Gomi K, Machida M, Hasegawa F, Nierman WC, Bhatnagar D, Cleveland TE. Genomics of economically significant Aspergillus and Fusarium species. In Appl Micolo Biotechnol, An International Series, Vol. 4, Fungal Genomics. 2004: 249–283Google Scholar
  10. 10.
    Coulson, A, Sulston, J, Brenner, S, Karn, J 1986Toward a physical map of the genome of the nematode Caenorhabditis elegansProc Natl Acad Sci USA8378267830CrossRefGoogle Scholar
  11. 11.
    Gotoh, O 2000Homology-based gene structure prediction: simplified matching algorithm using a translated codon (tron) and improved accuracy by allowing for long gapsBioinformatics16190202PubMedCrossRefGoogle Scholar
  12. 12.
    Asai K, Itou K, Ueno Y, Yada T. Recognition of human genes by stochastic parsing. Pac Symp Biocomput 1998; 3: 228–239Google Scholar
  13. 13.
    Majoros, WH, Pertea, M, Antonescu, C, Salzberg, SL 2003Glimmer M, Exonomy and unveil: three ab initio eukaryotic genefindersNucl. Acid Res.3136013604CrossRefGoogle Scholar
  14. 14.
    Florea, L, Hartzell, G, Zhang, Z, Rubin, GM, Miller, WA 1998Computer program for aligning a cDNA sequence with a genomic DNA sequenceGenome Res8967974PubMedGoogle Scholar
  15. 15.
    Tatusov, RL, Fedorova, ND, Jackson, JD, Jacobs, AR, Kiryutin, B, Koonin, EV, Krylov, DM, Mazumder, R, Mekhedov, SL, Nikolskaya, AN, Rao, BS, Smirnov, S, Sverdlov, AV, Vasudevan, S, Wolf, YI, Yin, JJ, Natale, DA 2003The COG database: an update version includes eukaryotesBMC Bioinformatics441PubMedCrossRefGoogle Scholar
  16. 16.
    Lowe, TM, Eddy, SR 1997tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequenceNucl Acid Res25955964CrossRefGoogle Scholar
  17. 17.
    Galagan, JE, Calvo, SE, Cuomo, C, Ma, LJ, Wortman, JR, Batzoglou, S, Lee, SI, Basturkmen, M, Spevak, CC, Clutterbuck, J, Kapitonov, V, Jurka, J, Scazzocchio, C, Farman, M, Butler, J, Purcell, S, Harris, S, Braus, GH, Draht, O, Busch, S, D’Enfert, C, Bouchier, C, Goldman, GH, Bell-Pedersen, D, Griffiths-Jones, S, Doonan, JH, Yu, J, Vienken, K, Pain, A, Freitag, M, Selker, EU, Archer, DB, Penalva, MA, Oakley, BR, Momany, M, Tanaka, T, Kumagai, T, Asai, K, Machida, M, Nierman, WC, Denning, DW, Caddick, M, Hynes, M, Paoletti, M, Fischer, R, Miller, B, Dyer, P, Sachs, MS, Osmani, SA, Birren, BW 2005Sequencing of␣Aspergillus nidulans and comparative analysis with A.␣fumigatus and A. oryzaeNature43811051115PubMedCrossRefGoogle Scholar
  18. 18.
    Nierman, WC, Pain, A, Anderson, MJ, Wortman, JR, Kim, HS, Arroyo, J, Berriman, M, Abe, K, Archer, DB, Bermejo, C, Bennett, J, Bowyer, P, Chen, D, Collins, M, Coulsen, R, Davies, R, Dyer, PS, Farman, M, Fedorova, N, Fedorova, N, Feldblyum, TV, Fischer, R, Fosker, N, Fraser, A, Garcia, JL, Garcia, MJ, Goble, A, Goldman, GH, Gomi, K, Griffith-Jones, S, Gwilliam, R, Haas, B, Haas, H, Harris, D, Horiuchi, H, Huang, J, Humphray, S, Jimenez, J, Keller, N, Khouri, H, Kitamoto, K, Kobayashi, T, Konzack, S, Kulkarni, R, Kumagai, T, Lafton, A, Latge, JP, Li, W, Lord, A, Lu, C, Majoros, WH, May, GS, Miller, BL, Mohamoud, Y, Molina, M, Monod, M, Mouyna, I, Mulligan, S, Murphy, L, O’Neil, S, Paulsen, I, Penalva, MA, Pertea, M, Price, C, Pritchard, BL, Quail, MA, Rabbinowitsch, E, Rawlins, N, Rajandream, MA, Reichard, U, Renauld, H, Robson, GD, Rodriguez Cordoba, S, Rodriguez-Pena, JM, Ronning, CM, Rutter, S, Salzberg, SL, Sanchez, M, Sanchez-Ferrero, JC, Saunders, D, Seeger, K, Squares, R, Squares, S, Takeuchi, M, Tekaia, F, Turner, G, Vazquez Aldana, CR, Weidman, J, White, O, Woodward, J, Yu, JH, Fraser, C, Galagan, JE, Asai, K, Machida, M, Hall, N, Barrell, B, Denning, DW 2005Genomic sequence of the pathogenic and␣allergenic filamentous fungus Aspergillus fumigatusNature43811511156PubMedCrossRefGoogle Scholar
  19. 19.
    Kusumoto, KI, Suzuki, S, Kashiwagi, Y 2003Telomeric repeat sequence of Aspergillus oryzae consists of dodeca-nucleotidesAppl. Microbiol. Biotechnol.61247251PubMedGoogle Scholar
  20. 20.
    Kitamoto, K, Kimura, K, Gomi, K, Kumagai, C 1994Electrophoretic karyotype and gene assignment to chromosomes of Aspergillus oryzaeBiosci Biotechnol Biochem5814671470PubMedCrossRefGoogle Scholar
  21. 21.
    Bechert, T, Heck, S, Fleig, U, Diekmann, S, Hegemann, JH 1999All 16 centromere DNAs from Saccharomyces cerevisiae show DNA curvatureNucleic Acids Res.2714441449PubMedCrossRefGoogle Scholar
  22. 22.
    Archer, DB, Dyer, PS 2004From genomics to post-genomics in AspergillusCurr Opin Microbiol.7499504PubMedCrossRefGoogle Scholar
  23. 23.
    Goffeau, A, Barrell, BG, Bussey, H, Davis, RW, Dujon, B, Feldmann, H, Galibert, F, Hoheisel, JD, Jacq, C, Johnston, M, Louis, EJ, Mewes, HW, Murakami, Y, Philippsen, P, Tettelin, H, Oliver, SG 1996Life with 6000 genesScience.274563567CrossRefGoogle Scholar
  24. 24.
    Ferea, TL, Botstein, D, Brown, PO, Rosenzweig, RF 1999Systematic changes in gene expression patterns following adaptive evolution in yeastProc Natl Acad Sci USA9697219726PubMedCrossRefGoogle Scholar
  25. 25.
    Naitou, M, Hagiwara, H, Hanaoka, F, Murakami, Y 1997Expression profiles of transcripts from 126 open reading frames in the entire chromosome VI of Saccharomyces cerevisiae by systematic Northern analysesYeast1312751290PubMedCrossRefGoogle Scholar
  26. 26.
    Blumenthal, CZ 2004Production of toxic metabolites in Aspergillus niger, Aspergillus oryzae, and Trichoderma reesei: justification of mycotoxin testing in food grade enzyme preparations derived from the three fungiRegul Toxicol Pharmacol39214228PubMedCrossRefGoogle Scholar
  27. 27.
    Pariza, MW, Johnson, EA 2001Evaluating the safety of microbial enzyme preparations used in food processing: update for a new centuryRegul Toxicol Pharmacol33173186PubMedCrossRefGoogle Scholar
  28. 28.
    Joint FAO/WHO Committee on Food Additives (JECFA), 1989. Specifications for identity and purity of certain food additives. JECFA 35th session. RomeGoogle Scholar
  29. 29.
    Liu, P, Chen, S 1966Studies on toxin production by fungi used in fermentation industryChung-Kuo Nung Yeh Hua Hsueh Hui Chih.46573Google Scholar
  30. 30.
    Matsushima, K, Chang, P-K, Yu, J, Abe, K, Bhatnagar, D, Cleveland, TE 2001Pre-termination in aflR of Aspergillus sojae inhibits aflatoxin biosynthesisAppl Microbiol Biotechnol55585589PubMedCrossRefGoogle Scholar
  31. 31.
    Matsushima, K, Yashiro, K, Hanya, Y, Abe, K, Yabe, K, Hamasaki, T 2001Absence of aflatoxin biosynthesis in koji mold (Aspergillus sojae)Appl Microbiol Biotechnol55771776PubMedCrossRefGoogle Scholar
  32. 32.
    Goto, T, Shinshi, E, Tanaka, K, Masaru, M 1987Production of cyclopiazonic acid by koji molds and possibility of cyclopiazonic acid contamination of Japanese fermented foodsShokuhin Sogo Kenkyusho Kenkyu Hokoku512328Google Scholar
  33. 33.
    Barbesgaard, P, Heldt-Hansen, H, Diderichsen, B 1992On the safety of Aspergillus oryzae: a reviewAppl Microbiol Biotechnol36569572PubMedCrossRefGoogle Scholar
  34. 34.
    Greenough, RJ, Perry, CJ, Stavnsbjerg, M 1996Safety evaluation of a lipase expressed in Aspergillus oryzaeFood Chem Toxicol34161166PubMedCrossRefGoogle Scholar
  35. 35.
    Lane, RW, Yamakoshi, J, Kikuchi, M, Mizusawa, K, Henderson, L, Smith, M 1997Safety evaluation of tannase enzyme preparation derived from Aspergillus oryzaeFood Chem Toxicol35207212PubMedCrossRefGoogle Scholar
  36. 36.
    Ye, GS, Fields, ML 1989Cellulolytic enzyme production by three fungi grown in a ground corn cob mediumJ Food Prot52248251Google Scholar
  37. 37.
    Yu, J, Whitelaw, CA, Nierman, WC, Bhatnagar, D, Cleveland, TE 2004Aspergillus flavus expressed sequence tags for identification of genes with putative roles in aflatoxin contamination of cropsFEMS Microbiol Lett237333340PubMedGoogle Scholar
  38. 38.
    Bok, JW, Keller, NP 2004LaeA, a regulator of secondary metabolism in Aspergillus spp. EukaryotCell3527535Google Scholar
  39. 39.
    Woloshuk, CP, Foutz, KR, Brewer, JF, Bhatnagar, D, Cleveland, TE, Payne, GA 1994Molecular characterization of aflR, a regulatory locus for aflatoxin biosynthesisAppl Environ Microbiol6024082414PubMedGoogle Scholar
  40. 40.
    Yu, JH, Butchko, RA, Fernandes, M, Keller, NP, Leonard, TJ, Adams, TH 1996Conservation of structure and function of the aflatoxin regulatory gene aflR from Aspergillus nidulans and A. flavusCurr Genet29549555PubMedGoogle Scholar
  41. 41.
    Kusumoto, K, Yabe, K, Nogata, Y, Ohta, H 1998Transcript of a homolog of aflR, a regulatory gene for aflatoxin synthesis in Aspergillus parasiticus, was not detected in Aspergillus oryzae strainsFEMS Microbiol Lett169303307PubMedCrossRefGoogle Scholar
  42. 42.
    Watson, AJ, Fuller, LJ, Jeenes, DJ, Archer, DB 1999Homologs of aflatoxin biosynthesis genes and sequence of aflR in Aspergillus oryzae and Aspergillus sojaeAppl Environ Microbiol65307310PubMedGoogle Scholar
  43. 43.
    Takahashi, T, Chang, P-K, Matsushima, K, Yu, J, Abe, K, Bhatnagar, D, Cleveland, TE, Koyama, Y 2002Nonfunctionality of Aspergillus sojae aflR in a strain of Aspergillus parasiticus with a disrupted aflR geneAppl Environ Microbiol6837373743PubMedCrossRefGoogle Scholar
  44. 44.
    Mayer, JM, Kaplan, DL 1994Biodegradable materials: balancing degradability and performanceTrends Polym Sci2227235Google Scholar
  45. 45.
    Maeda, H, Yamagata, Y, Abe, K, Hasegawa, F, Machida, M, Ishioka, R, Gomi, K, Nakajima, T 2005Purification and characterization of biodegradable plastic degradation enzyme from Aspergillus oryzaeAppl Microbiol Biotech67778788CrossRefGoogle Scholar
  46. 46.
    Lin, TS, Kolattukudy, PE 1978Induction of a biopolyester hydrolase (cutinase) by low levels of cutin monomers in Fusarium solani f. sp. pisiJ. Bacteriol.133942951PubMedGoogle Scholar
  47. 47.
    Takahashi, T, Maeda, H, Yoneda, S, Ohtaki, S, Yamagata, Y, Hasegawa, F, Gomi, K, Nakajima, T, Abe, K 2005The fungal hydrophobin RolA recruits polyesterase and laterally moves on hydrophobic surfacesMol Microbiol5717801798PubMedCrossRefGoogle Scholar
  48. 48.
    Stringer, MA, Dean, RA, Sewall, TC, Timberlake, WE 1991Rodletless, a new Aspergillus developmental mutant induced by directed gene inactivationGenes Dev511611171PubMedGoogle Scholar
  49. 49.
    Vries, OMH, Fekkes, MP, Wosten, HAB, Wessels, JGH 1993Insoluble hydrophobin complexes in the walls of Schizophyllum commune and other filamentous fungiArch Microbiol159330335CrossRefGoogle Scholar
  50. 50.
    Wessels, JGH, Vries, OMH, Asgeirsdottir, SA, Schuren, FHJ 1991Hydrophobin genes involved in formation of aerial hyphae and fruit bodies in SchizophyllumPlant Cell3793799PubMedCrossRefGoogle Scholar
  51. 51.
    Wessels, JGH 1994Developmental regulation of fungal cell wall formationAnnu Rev Phytopathol32413437Google Scholar
  52. 52.
    Sato, Y, Sagami, I, Shimizu, T 2004Identification of caveolin-1-interacting sites in neuronal nitric-oxide synthase. Molecular mechanism for inhibition of NO formationJ Biol Chem27988278836PubMedCrossRefGoogle Scholar
  53. 53.
    Giese, B, Au-Yeung, C, Herrmann, A, Diefenbach, S, Haan, C, Kuster, A, Wortmann, SB, Roderburg, CK, Heinrich, PC, Behrmann, I, Muller-Newen, G 2003Long term association of the cytokine receptor gp130 and the Janus kinase Jak1 revealed by FRAP analysisJ Biol Chem2783920539213PubMedCrossRefGoogle Scholar
  54. 54.
    Wosten, HAB, Vries, OMH, Wessels, JGH 1993Interfacial self-assembly of a fungal hydrophobin into a hydrophobic rodlet layerPlant Cell515671574PubMedCrossRefGoogle Scholar
  55. 55.
    Wosten, HAB, Schuren, FHJ, Wessels, JGH 1994Interfacial self-assembly of a hydrophobin into an amphipathic protein membrane mediates fungal attachment to hydrophobic surfacesEMBO J1358485854PubMedGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • Keietsu Abe
    • 1
    • 2
    • 5
  • Katusya Gomi
    • 2
    • 3
  • Fumihiko Hasegawa
    • 2
  • Masayuki Machida
    • 4
  1. 1.Laboratory of Enzymology, Division of Life Science, Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
  2. 2.The New Industry Creation Hatchery CenterTohoku UniversitySendaiJapan
  3. 3.Laboratory of Bioindustrial Genomics, Division of Bioscience and Biotechnology for Future Bioindustries, Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan
  4. 4.Institute for Biological Resources and FunctionsNational Institute of Advanced Industrial Science and Technology (AIST)Tsukuba, IbarakiJapan
  5. 5.Laboratory of Enzymology, Department of Molecular and Cell Biology, Graduate School of Agricultural ScienceTohoku UniversitySendaiJapan

Personalised recommendations