, Volume 159, Issue 4, pp 539–552 | Cite as

Modeling effects of environment, insect damage, and Bt genotypes on fumonisin accumulation in maize in Argentina and the Philippines

  • Regina de  la  Campa
  • David C. Hooker
  • J. David MillerEmail author
  • Arthur W. Schaafsma
  • Bruce G. Hammond


Fumonisins are common contaminants of maize (Zea mays L.) grain products, especially in countries where maize is a major constituent of the diet and are harmful to human and animal health. There is a need to better define environmental conditions that favor fumonisin accumulation in the grain of maize. The impacts of biotic and abiotic factors, and hybrids containing the Cry1Ab protein from Bacillus thuringiensis (Bt), were associated with fumonisin accumulation in the grain of maize across contrasting environments in Argentina and the Philippines between 2000 and 2002. Average fumonisin concentrations in grain samples varied from 0.5 to 12 μg g−1 across field locations in Argentina, and from 0.3 to 1.8 μg g−1 across locations in the Philippines. The ratio of fumonisin B1 to fumonisin B2 was <3.0 in four of nine locations in Argentina, which proved to be due to a higher prevalence of Fusarium proliferatum in those locations. Most of the variability of total fumonisins among maize grain samples was explained by location or weather (47%), followed by insect damage severity in mature ears (17%), hybrid (14%), and with the use of Bt hybrids (11%). In Argentina, where conditions were more favorable for accumulation of fumonisin in the years considered, fumonisin concentrations were lower in Bt hybrids compared to their genetic isolines by an average of 40%. A model was developed to predict fumonisin concentration using insect damage to ears and weather variables as predictors in the model. Four periods of weather around silking were identified as critical for fumonisin concentrations at harvest. The model accounted for 82% of the variability of total fumonisin across all locations in 2 years of the study.

Key words

Bt corn fumonisin hybrid insect maize model mycotoxins Weather 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Marasas, WFO, Miller, JD, Riley, RT, Visconti, A 2001Fumonisins – Occurrence, toxicology, metabolism and risk assessmentSummerell, BALeslie, JFBackhouse, DBryden, WLBurgess, LW eds. Fusarium Paul E. Nelson SymposiumAPS PressSt. Paul332359Google Scholar
  2. 2.
    Miller, JD 1994Epidemiology of Fusarium ear diseasesMiller, JDTrenholm, HL eds. Mycotoxins in Grain: Compounds Other than Aflatoxin.Eagan PressSt. Paul1936Google Scholar
  3. 3.
    Pestka, JJ, Bondy, GS 1994Immunotoxic effects of mycotoxinsMiller, JDTrenholm, HL eds. Mycotoxins in Grain: Compounds other than Aflatoxin.The American Phytopathological SocietySt. Paul339358Google Scholar
  4. 4.
    Rheeder, JP, Marasas, WFO, Thiel, PG, Sydenham, EW, Shephard, GS, Schalkwyck, DJV 1992Fusarium moniliforme and fumonisins in corn in relation to esophageal cancer in TranskeiPhytopathology82353357Google Scholar
  5. 5.
    Stack, ME 1998Analysis of fumonisin B1 and its hydrolysis product in tortillasJ AOAC Int81737740PubMedGoogle Scholar
  6. 6.
    CFSAN. Guidance for Industry: Fumonisin Levels in Human Foods and Animal Feeds. USFDA Center for Food Safety and Applied Nutrition and the Center for Veterinary Medicine. 2001. ( (Accessed March 2004)
  7. 7.
    Bullerman, BL 1996Occurrence of Fusarium and fumonisins on food grains and in foodJackson, LSDevries, JWBullerman, BL eds. Fumonisins in FoodPlenum PressNew York and London2738Google Scholar
  8. 8.
    Munkvold, GP, McGee, DC, Carlton, WM 1997Important of different pathways for maize kernel infection by Fusarium moniliformePhytopathology87209217Google Scholar
  9. 9.
    Ali, N, Sardjono, , Yamashita, A, Yoshizawa, T 1998Natural co-occurrence of aflatoxins and Fusarium mycotoxins (fumonisins, deoxynivalenol, nivalenol and zearalenone) in corn from IndonesiaFood Addit Contam15377384PubMedGoogle Scholar
  10. 10.
    Doko, MB, Rapior, S, Visconti, A, Schjoth, JE 1995Incidence and levels of fumonisin contamination in maize genotypes grown in Europe and AfricaJ Agric Food Chem43429434CrossRefGoogle Scholar
  11. 11.
    Yamashita, A, Yoshizawa, T, Aiura, Y, Sanchez, PC, Dizon, EI, Arim, RH, Sardjono,  1995Fusarium mycotoxins (fumonisins, nivalenol, and zearalenone) and aflatoxins in corn from Southeast AsiaBiosci Biotech Biochem5918041807Google Scholar
  12. 12.
    Yoshizawa T, Yamashita A. Natural co-occurrence of fumonisins and aflatoxins, carcinogenic mycotoxins in corn and corn products in the Philippines. Occurrence Microbiol Control Mycotoxins Foodstuffs & Other Agric Commod 1995; 25–36Google Scholar
  13. 13.
    Munkvold, GP 2003Epidemiology of Fusarium disease and their mycotoxins in maizeEur J Plant Pathol109705713CrossRefGoogle Scholar
  14. 14.
    Logrieco, A, Mule, G, Moretti, A, Bottalico, A 2002Toxigenic Fusarium species and mycotoxins associated with maize ear rot in EuropeEur J Plant Pathol108597609CrossRefGoogle Scholar
  15. 15.
    Hesseltine, CW, Rogers, RF, Shotwell, OL 1993Aflatoxin and mold flora in North Carolina in 1977 corn cropMycologia73216228Google Scholar
  16. 16.
    Miller JD, Savard ME, Schaafsma AW, Seifert KA, Reid LM. Mycotoxin production by Fusarium moniliforme and Fusarium proliferatum from Ontario and occurrence of fumonisin in the 1993 corn crop. Can J Plant Pathol 17: 233–239Google Scholar
  17. 17.
    Pascale, M, Visconti, A, Pronczuk, M, Wisniewska, H, Chelkowski, J 1997Accumulation of fumonisins in maize hybrids inoculated under field conditions with Fusarium moniliforme SheldonJ Sci Food Agric7416CrossRefGoogle Scholar
  18. 18.
    Ramirez, M, Pascale, M, Chultze, S, Reynoso, MM, March, G, Visconti, A 1996Natural occurrence of fumonisins and their correlation to Fusarium contamination in commercial corn hybrids grown in ArgentinaMycopathologia1352934CrossRefGoogle Scholar
  19. 19.
    Shurtleff, MC 1980Compendium of Corn DiseaseAmerican Phytopathological SocietySt. Paul, MNGoogle Scholar
  20. 20.
    Miller, JD 2001Factors that affect the occurrence of fumonisinEnviron Health Persp109321324Google Scholar
  21. 21.
    Reid, LM, Nicol, RW, Ouellet, T, Savard, M, Miller, JD, Young, JC, Stewart, DW, Schaafsma, AW 1999Interaction of Fusarium graminearum and F. moniliforme in maize ears: Disease progress, fungal biomass, and mycotoxin accumulationPhytopathology8910281037Google Scholar
  22. 22.
    Shelby, RA, White, DG, Bauske, EM 1994Differential fumonisin production in maize hybridsPlant Dis78582584Google Scholar
  23. 23.
    Doko, MB, Canet, C, Brown, N, Sydenham, EW, Mpuchane, S, Siame, BA 1996Natural co-occurrence of fumonisins and zearalenone in cereals and cereal-based foods from Eastern and Southern AfricaJ Agric Food Chem4432403243CrossRefGoogle Scholar
  24. 24.
    Visconti, A 2001Fumonisins in maize genotypes grown in various geographic areasAdv Exp Med Bio392193204Google Scholar
  25. 25.
    Duvick, J 2001Prospects for reducing fumonisin contamination of maize through genetic modificationEnvironmental Health Perspectives109337342PubMedGoogle Scholar
  26. 26.
    Bakan, B, Melcion, D, Richard-Molard, D, Cahagnier, B 2002Fungal growth and Fusarium mycotoxin content in isogenic traditional maize and genetically modified maize grown in France and SpainJ Agric Food Chem50728731CrossRefPubMedGoogle Scholar
  27. 27.
    Munkvold, GP, Hellmich, RL, Showers, WB 1997Reduced Fusarium ear rot and symptomless infections of maize genetically engineered for European Corn Borer ResistancePhytopathology8710711077Google Scholar
  28. 28.
    Munkvold, GP, Hellmich, RL, Rice, LP 1999Comparison of fumonisin concentrations in kernels of transgenic Bt maize hybrids and nontransgenic hybridsPlant Dis83130138Google Scholar
  29. 29.
    Hammond, BG, Campbell, K, Pilcher, C, DeGooyer, T, Robinson, A, McMillen, B, Spangler, S, Riordan, S, Rice, L, Richard, J 2004Lower fumonisin mycotoxin levels in the grain of Bt corn grown in the United States in 2000–2002J Agric Food Chem5213901397PubMedGoogle Scholar
  30. 30.
    Riley RT, Miller JD. Case study: Risk analysis of fumonisin. In: Food Safety – Risk Analysis, A Manual Published By The United Nations Food & Agriculture Organization, ILSI and The Industry Council For Development. United Nations Food and Agriculture Organization, The International Life Sciences Institute and the Industry Council for Development, Rome, Italy, 2003Google Scholar
  31. 31.
    Hooker, DC, Schaafsma, AW, Tamburic-Ilincic, L 2002Using weather variables pre- and post-heading to predict deoxynivalenol content in winter wheatPlant Dis86611619Google Scholar
  32. 32.
    Hooker, DC, Schaafsma, AW 2003The Doncast model: using weather variables pre- and post-heading to predict deoxynivalenol content in winter wheatAspects Appl Biol68117122Google Scholar
  33. 33.
    Dowd PF, Bartelt RJ, Beck JJ, Barnett J, Berhow MA, Duvick JP, Lagrimini ML, Molid GA, White DG. Insect management for reduction of mycotoxins in midwest corn FY-2001 report. In: Proceedings of the 1st fungal genomics, 2nd fumonisin elimination and 14th aflatoxin elimination workshops. Phoenix, Arizona 2001; pp. 83–84Google Scholar
  34. 34.
    Stave, J 2002Protein immunoassay methods for the detection of biotech crops: Applications, limitations, and practical considerationsJ AOAC Int85780786PubMedGoogle Scholar
  35. 35.
    Visconti, A, Solfrizzo, M, De Girolamo, A 2001Determination of fumonisins B1 and B2 in corn and corn flakes by liquid chromatography with immunoaffinity column clean-up: Collaborative studyJ AOAC Int8418281138PubMedGoogle Scholar
  36. 36.
    Nash, SM, Snyder, WC 1962Quantitative estimations by plate counts of propagules of the bean root rot Fusarium in field soilsPhytopathology52567572Google Scholar
  37. 37.
    Nirenberg, HI 1976Untersuchungen uber die morphologische und biologische Differenzierung in der Fusarium- Sektion LiseolaMitt Biol Bundesanst Land Forstwirtsch Berlin-Dahlem1691117Google Scholar
  38. 38.
    Nelson, PA, Toussoun, TA, Marasas, WFO 1983Fusarium Species: An Illustrated Manual for IdentificationPennsylvania State University PressUniversity Park, PAGoogle Scholar
  39. 39.
    SAS Institute1985SAT-STAT Guide. version XSAS InstituteCary, NCGoogle Scholar
  40. 40.
    Cawood, ME, Gelderblom, WCA, Vleggaar, AR, Behrend, Y, Thiel, PG, Marasas, WFO 1991Isolation of the fumonisin mycotoxins: A quantitative approachJ Agric Food Chem3919581962CrossRefGoogle Scholar
  41. 41.
    Sydenham, EW, Shephard, GS, Thiel, PG 1992Liquid chromatographic determination of fumonisins B1, B2, and B3 in foods and feedsJ AOAC Int75313318Google Scholar
  42. 42.
    Chulze, SN, Ramirez, M, Pascale, M, Visconti, A 1998Fumonisin production by, and mating populations of, Fusarium section Liseola isolates from maize in ArgentinaMycol Res1202141144CrossRefGoogle Scholar
  43. 43.
    Cotten, TK, Munkvold, GP 1998Survival of Fusarium moniliforme, F. proliferatum, and F. subglutinans in maize stalk residuePhytopathology88550555Google Scholar
  44. 44.
    Andries C, Jarosz A, Trail F. Effects of rainfall and temperature on production of perithecia by Gibberella zeae in field debris in Michigan. Proceedings, 2000 National Fusarium Head Blight Forum, Erlanger, KY. December 10–12, 2000, pp. 118–119Google Scholar
  45. 45.
    Doko, MB, Rapior, S, Visconti, A, Schjoth, JE 1995Incidence and levels of fumonisin contamination in maize genotypes grown in Europe and AfricaJ Agric Food Chem43429434CrossRefGoogle Scholar
  46. 46.
    Sutton, JC 1982Epidemiology of wheat head blight and maize ear rot caused by Fusarium graminearumCan J Plant Pathol4195209Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Regina de  la  Campa
    • 1
  • David C. Hooker
    • 2
  • J. David Miller
    • 1
    Email author
  • Arthur W. Schaafsma
    • 2
  • Bruce G. Hammond
    • 3
  1. 1.Ottawa-Carleton Institute of ChemistryCarleton UniversityOttawaCanada
  2. 2.Ridgetown CollegeUniversity of GuelphRidgetownCanada
  3. 3.Product Safety CenterMonsanto CompanySt LouisUSA

Personalised recommendations