, Volume 160, Issue 4, pp 303–314 | Cite as

Differential Expression of Chitin Synthase (CHS) and Glucan Synthase (FKS) Genes Correlates with the Formation of a Modified, Thinner Cell Wall in in vivo-produced Beauveria bassiana Cells

  • Aurélien Tartar
  • Alexandra M. Shapiro
  • Dancia W. Scharf
  • Drion G. BouciasEmail author


During infection (in vivo), the entomopathogenic fungus Beauveria bassiana produces yeast-like cells that are surrounded by modified cell walls. These modifications have been related to the fungus ability to limit recognition by the host defense system. The composition of the in vivo cell wall was analyzed using a combination of cytochemical and molecular techniques. The in vivo cell walls still contained both chitin and 1,3-β-glucan, but they were significantly thinner than in vitro cell walls (50–60 nm versus 100–160 nm, respectively). The difference in cell wall thickness was correlated with transcriptional regulation of cell wall-related genes: quantitative RT-PCR reactions demonstrated that B. bassiana chitin synthase (CHS) and glucan synthase (FKS) genes are down regulated in vivo. These analyses indicate that in vivo-triggered phenotypic modifications, including cell wall adjustments, are controlled by molecular mechanisms that include regulation of gene expression at the transcriptional level.


AY743592 AY743593 CF350282 dimorphism fungal cell wall host-pathogen interactions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boucias, DG, Latgé, JP 1988Invertebrate fungal elicitorsDrouhet, ECole, GTDeRepentigny, LLatgé, JPDupont, B eds. Fungal Antigen Isolation, Purification, and DetectionPlenum PressNY121137Google Scholar
  2. 2.
    Gillespie, JP, Bailey, AM, Cobb, B, Vilcinskas, A 2000Fungi as elicitors of insect immune responsesArch Insect Biochem Physiol444968CrossRefPubMedGoogle Scholar
  3. 3.
    Pendland, JC, Boucias, DG 1996Phagocytosis of lectin-opsonized fungal cells and endocytosis of the ligand by insect Spodoptera exigua granular hemocytes: An ultrastructural and immunocytochemical studyCell Tissue Res2855767CrossRefGoogle Scholar
  4. 4.
    Beauvais, A, Latgé, JP 1989Chitin and (1–3) glucan synthases in the protoplastic entomophthoralesArch Microbiol152229236CrossRefGoogle Scholar
  5. 5.
    Beauvais, A, Latgé, JP, Vey, A, Prevost, MC 1989The role of surface components of the entomopathogenic fungus Entomophaga aulicae in the cellular immune response of Galleria mellonella (Lepidoptera)J Gen Microbiol135489498Google Scholar
  6. 6.
    Mackichan, J, Thomsen, L, Kerwin, J, Latgé, JP, Beauvais, A 1995Unsaturated fatty acids are the active molecules of a glucan-synthase-inhibitory fraction isolated from entomophthoralean protoplastsMicrobiology141275762PubMedGoogle Scholar
  7. 7.
    Pendland, JC, Heath, MA, Boucias, DG 1988Function of a galactose-binding lectin from Spodoptera exigua larval hemolymph: opsonization of blastospores from entomogenous hyphomycetesJ Insect Physiol34533540CrossRefGoogle Scholar
  8. 8.
    Pendland, JC, Hung, SY, Boucias, DG 1993Evasion of host defense by in vivo produced protoplast like cells of the insect mycopathogen Beauveria bassianaJ Bacteriol.17559625969PubMedGoogle Scholar
  9. 9.
    Farkas, V 1990Fungal cell walls: their structure, biosynthesis and biotechnological aspectsActa Biotechnol10225238CrossRefGoogle Scholar
  10. 10.
    Mio, T, Adachi-Shimizu, M, Tachibana, Y, Tabuchi, H, Inoue, SB, Yabe, T, Yamada-Okabe, T, Arisawa, M, Watanabe, T, Yamada-Okabe, H 1997Cloning of the Candida albicans homolog of Saccharomyces cerevisae GSC1/FKS1 and its involvement in β-1,3-glucan synthesisJ Bacteriol17940964105PubMedGoogle Scholar
  11. 11.
    Kang, MS, Cabib, E 1986Regulation of fungal cell wall growth: a guanine nucleotide-binding, proteinaceous component required for activity of 1,3-β-d-glucan synthaseProc Natl Acad Sci USA8358085812PubMedGoogle Scholar
  12. 12.
    Mazur, P, Baginsky, W 1996In vitro activity of 1,3-β-d-glucan synthase requires the GTP-binding protein Rho1J. Biol. Chem.2711460414609CrossRefPubMedGoogle Scholar
  13. 13.
    Douglas, CM, Foor, F, Marrinan, JA, Morin, N, Nielsen, JB, Dahl, AM, Mazur, P, Baginsky, W, Li, W, El-Sherbeini, M, Clemas, JA, Mandala, SM, Frommer, BR, Kurtz, MB 1994The Saccharomyces cerevisae FKS1 (ETG1) gene encodes an integral membrane protein which is a subunit of 1,3-β-d-glucan synthaseProc Natl Acad Sci USA911290712911PubMedGoogle Scholar
  14. 14.
    Kelly, R, Register, E, Hsu, M, Kurtz, M, Nielsen, J 1996Isolation of a gene involved in 1,3-β-glucan synthesis in Aspergillus nidulans and purification of the corresponding proteinJ Bacteriol17843814391PubMedGoogle Scholar
  15. 15.
    Thompson, JR, Douglas, CM, Li, W, Jue, CK, Pramanik, B, Yuan, X, Rude, TH, Toffaletti, DL, Perfect, JR, Kurtz, M 1999A glucan synthase FKS1 homolog in Cryptococcus neoformans is single copy and encodes an essential functionJ Bacteriol181444453PubMedGoogle Scholar
  16. 16.
    Pereira, M, Felipe, MSS, Brigido, MM, Soares, CMA, Azevedo, MO 2000Molecular cloning and characterization of a glucan synthase gene from the human pathogenic fungus Paracoccidioides brasiliensisYeast16451462CrossRefPubMedGoogle Scholar
  17. 17.
    Bowen, AR, Chen-Wu, JL, Momany, M, Young, R, Szaniszlo, PJ, Robbins, PW 1992Classification of fungal chitin synthasesProc Natl Acad Sci USA89519523PubMedGoogle Scholar
  18. 18.
    Tartar, A, Boucias, DG 2004A pilot-scale expressed sequence tag analysis of Beauveria bassiana gene expression reveals a tripeptidyl peptidase that is differentially expressed in vivoMycopathologia158201209CrossRefPubMedGoogle Scholar
  19. 19.
    Thompson, JD, Gibson, TJ, Plewniak, F, Jeanmougin, F, Higgins, DG 1997The ClustalX Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis toolsNucl Acid Res2448764882CrossRefGoogle Scholar
  20. 20.
    Swofford DL. PAUP*, Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0. Sunderland MA: Sinauer Associates, 2000Google Scholar
  21. 21.
    Pfaffl, MW, Horgan, GW, Dempfle, L 2002Relative expression software tool (rest®) for group-wise comparison and statistical analysis of relative expression results in real-time PCRNuc Acids Res30e36CrossRefGoogle Scholar
  22. 22.
    Altschul, SF, Madden, TL, Schäffer, AA, Zhang, J, Zhang, Z, Miller, W, Lipman, DJ 1997Gapped BLAST and PSI-BLAST: a new generation of protein database search programsNuc Acids Res2533893402CrossRefGoogle Scholar
  23. 23.
    Beauvais, A, Bruneau, JM, Mol, PC, Buitrago, MJ, Legrand, R, Latgé, JP. 2001Glucan synthase complex of Aspergillus fumigatusJ Bacteriol18322732279CrossRefPubMedGoogle Scholar
  24. 24.
    Wang, Z, Szaniszlo, PJ 2000WdCHS3, a gene that encodes a class III chitin synthase in Wangiella (Exophiala) dermatitis, is expressed differentially under stress conditionsJ Bacteriol182874881CrossRefPubMedGoogle Scholar
  25. 25.
    Nam, JS, Lee, DH, Lee, KH, Park, HM, Bae, KS 1998Cloning and phylogenetic analysis of chitin synthase genes from the insect pathogenic fungus, Metarhizium anisopliae var anisopliaeFEMS Microbiol Lett1597784CrossRefPubMedGoogle Scholar
  26. 26.
    Nino-Vega, GA, Munro, CA, San-Blas, G, Gooday, GW, Gow, NAR 2000Differential expression of chitin synthase genes during temperature-induced dimorphic transitions in Paracoccidioides brasiliensisMed Mycol383139PubMedGoogle Scholar
  27. 27.
    Lee, JI, Choi, JH, Park, BC, Park, YH, Lee, MY, Park, HM, Maeng, PJ 2004Differential expression of the chitin synthase genes of Aspergillus nidulans, chsA, chsB, and chsC, in response to developmental status and environmental factorsFungal Genet Biol41635646CrossRefPubMedGoogle Scholar
  28. 28.
    Kellner, EM, Orsborn, KI, Siegel, EM, Mandel, MA, Orbach, MJ, Galgiani, JN 2005Coccidioides posadasii contains a single 1,3-β-glucan synthase gene that appears to be essential for growthEukaryot Cell4111120CrossRefPubMedGoogle Scholar
  29. 29.
    Mazur, P, Morin, N, Baginsky, W, El-Sherbeini, M, Clemas, JA, Nielsen, JB, Foor, F 1995Differential expression and function of two homologous subunits of yeast 1,3-β-d-glucan synthaseMol Cell Biol1556715681PubMedGoogle Scholar
  30. 30.
    Zhao, C, Jung, US, Garrett-Engele, P, Roe, T, Cyert, MS, Levin, DE 1998Temperature-induced expression of yeast FKS2 is under the dual control of protein kinase C and calcineurinMol Cell Biol1810131022PubMedGoogle Scholar
  31. 31.
    Rooney, PJ, Klein, BS 2002Linking fungal morphogenesis with virulenceCell Microbiol4127137CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Aurélien Tartar
    • 1
  • Alexandra M. Shapiro
    • 2
  • Dancia W. Scharf
    • 3
  • Drion G. Boucias
    • 3
    Email author
  1. 1.Department of BiologyClark UniversityWorcesterUSA
  2. 2.Center for Medical, Agricultural and Veterinary EntomologyUSDA, ARSGainesville
  3. 3.Department of Entomology and NematologyUniversity of FloridaGainesvilleUSA

Personalised recommendations