, Volume 159, Issue 3, pp 353–360 | Cite as

The use of new probes and stains for improved assessment of cell viability and extracellular polymeric substances in Candida albicans biofilms

  • Y. Jin
  • T. Zhang
  • Y. H. Samaranayake
  • H. H. P. Fang
  • H. K. Yip
  • L. P. SamaranayakeEmail author


Phenotypic and genotypic cell differentiation is considered an important feature that confers enhanced antifungal resistance in candidal biofilms. Particular emphasis has been placed in this context on the viability of biofilm subpopulations, and their heterogeneity with regard to the production of extracellular polymeric substances (EPS). We therefore assessed the utility of two different labeled lectins Erythrina cristagalli (ECA) and Canavalia ensiformis (ConA), for EPS visualization. To evaluate the viability of candidal biofilms, we further studied combination stains, SYTO9 and propidium iodide (PI). The latter combination has been successfully used to assess bacterial, but not fungal, viability although PI alone has been previously used to stain nuclei in fungal cells. Candida albicans biofilms were developed in a rotating disc biofilm reactor and observed in situ using confocal scanning laser microscopy (CSLM). Our data indicate that SYTO9 and PI are reliable vital stains that may be used to investigate C. albicans biofilms. When used together with ConA, the lectin ECA optimized EPS visualization and revealed differential production of this material in mature candidal biofilms. The foregoing probes and stains and the methodology described should help better characterize C. albicans biofilms in terms of cell their viability, and EPS production.


biofilm Candida albicans confocal scanning laser microscope differentiation stain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Banejee, SN, Emori, GT, Culver, DH, Gaynes, RP, Jarvis, WR, Horan, T, Edwards, JR 1991Secular trends in nosocomial primary bloodstream infections in the United States, 1980–1989Am J Med918689CrossRefGoogle Scholar
  2. 2.
    Kontoyiannis, D, Lewis, RE 2002Antifungal drug resistance of pathogenic fungiLancet35911351144CrossRefPubMedGoogle Scholar
  3. 3.
    Sanglard, D, Odds, FC 2002Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequencesLancet Infect Dis27385CrossRefPubMedGoogle Scholar
  4. 4.
    Korber, DR 1994Evaluation of fleroxacin activity against established Pesudomonas fluoresens biofilmsAppl Environ Microbiol6016631669PubMedGoogle Scholar
  5. 5.
    Suci, PA, Tyler, BJ 2003A method for discrimination of subpopulations of Candida albicans biofilm cells that exhibit relative levels of phenotypic resistance to chlorhexidineJ Microbiol Methods53313325CrossRefPubMedGoogle Scholar
  6. 6.
    Wentland, EJ, Huang, CT, McFeters, GA 1996Spatial variations in growth rate within Klebsiella pneumoniae colonies and biofilmBiotechnol Prog12316321CrossRefPubMedGoogle Scholar
  7. 7.
    Kuhn, DM, Chandra, J, Mukherjee, PK, Ghannoum, MA 2002Comparison of biofilms formed by Candida albicans and Candida parapsilosis on bioprosthetic surfacesInfect Immun70878888CrossRefPubMedGoogle Scholar
  8. 8.
    Guggenheim, B, Giertsen, W, Schupbach, P, Shapiro, S 2001Validation of an in vitro biofilm model of supragingival plaqueJ Dent Res80363370PubMedCrossRefGoogle Scholar
  9. 9.
    Heo, J, Thomas, KJ, Seong, GH, Crooks, RM 2003A microfluidic bioreactor based on hydrogel-entrapped E. coli: cell viability, lysis, and intracellular enzyme reactionsAnal Chem.752226CrossRefPubMedGoogle Scholar
  10. 10.
    Hawser, SP, Douglas, LJ 1994Biofilm formation by Candida species on the surface of catheter material in vitro Infect Immun62915921PubMedGoogle Scholar
  11. 11.
    Chandra, J, Kuhn, DM, Mukherjee, PK, Hoyer, LL, McCormick, T, Ghannoum, MA 2001Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistanceJ Bacteriology18353855394CrossRefGoogle Scholar
  12. 12.
    Bachmann, SP, Walle, KV, Ramage, G, Patterson, TF, Wickes, BL, Graybill, JR, López-Ribot, JL 2002In vitro activity of caspofungin against Candida albicans biofilmsAntimicrob Agents Chemother4635913596CrossRefPubMedGoogle Scholar
  13. 13.
    Samaranayake, YH, Samaranayake, LP, Pow, E, Beena, N 2001The antifungal effect of lysozyme and lactoferrin against genetically similar, sequential Candida albicans isolates from a HIV-infected Southern Chinese CohortJ Clin Microbiol3932963302CrossRefPubMedGoogle Scholar
  14. 14.
    Jin, Y, Yip, HK, Samaranayake, YH, Yau, JY, Samaranayake, LP 2003Biofilm forming ability of Candida albicans is unlikely to contribute to high oral yeast carriage in human immunodeficiency virus – infectionJ Clin Microbiol4129612967CrossRefPubMedGoogle Scholar
  15. 15.
    Hentzer, M, Teitzel, GM, Balzer, GJ, Heydorn, A, Molin, S, Givskov, M, Parsek, MR 2001Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and functionJ Bacteriol18353955401CrossRefPubMedGoogle Scholar
  16. 16.
    Singh, PK, Parsek, MR, Greenberg, EP, Welsh, MJ 2002A component of innate immunity prevents bacterial biofilm developmentNature417552555CrossRefPubMedGoogle Scholar
  17. 17.
    Zeng, X, Murata, T, Kawagishi, H, Usui, T, Kobayashi, K 1998Synthesis of artificial N-glycopolypeptides carrying N-acetyllactosamine and related compounds and their specific interactions with lectinsBiosci Biotechnol Biochem6211711178CrossRefPubMedGoogle Scholar
  18. 18.
    Kiernan, JA 1975Localization of alpha-D-glucosyl and alpha-D-mannosyl groups of mucosubstances with concanavalin A and horseradish peroxidaseHistochemistry443945CrossRefPubMedGoogle Scholar
  19. 19.
    Andes, D, Nett, J, Oschel, P, Albrecht, R, Marchillo, K, Pitula, A 2004Development and characterization of an in vivo central venous catheter Candida albicans biofilm modelInfect Immun.7260236031CrossRefPubMedGoogle Scholar
  20. 20.
    Baillie GS, Doulgas LJ. Matrix polymers of Candida biofilms and their possible role in biofilm resistance to antifungal agents. J Antimicrob Chemother 46: 397–403Google Scholar
  21. 21.
    Lawrence, JR, Korber, DR, Hoyle, BD, Costerton, JW, Caldwell, DE 1991Optical sectioning of microbial biofilmsJ Bacteriol17365586567PubMedGoogle Scholar
  22. 22.
    Palmer, RJ,Jr, Sternberg, C 1999Modern microscopy in biofilm research: confocal microscopy and other approachesCurr Opin Biotechnol10263268CrossRefPubMedGoogle Scholar
  23. 23.
    Watnick, PI, Kolter, R 2000Biofilm, city of microbesJ Bacteriol18226752679CrossRefPubMedGoogle Scholar
  24. 24.
    Ramage, G, Walle, KV, Wickes, BL, López-Ribot, JL 2001Biofilm formation by Candida dubliniensis J Clin Microbiol3932343240CrossRefPubMedGoogle Scholar
  25. 25.
    Sullivan, PA, Yin, CY, Molloy, C, Templeton, MD, Shepherd, MG 1983An analysis of the metabolism and cell wall composition of Candida albicans during germ-tube formationCan J Microbiol2915141525PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Y. Jin
    • 1
  • T. Zhang
    • 2
  • Y. H. Samaranayake
    • 1
  • H. H. P. Fang
    • 2
  • H. K. Yip
    • 3
  • L. P. Samaranayake
    • 1
    Email author
  1. 1.Division of Oral Biosciences, Faculty Dentistry, The Prince Philip Dental HospitalUniversity of Hong KongSAR, China
  2. 2.Department of Civil EngineeringThe University of Hong KongChina
  3. 3.Division of Oral Diagnosis, Faculty of DentistryThe University of Hong kongChina

Personalised recommendations