Advertisement

A robust STAP approach for airborne FDA radar with multiple possible prior information constraints

  • Zhihui LiEmail author
  • Yongshun Zhang
  • Yiduo Guo
  • Guimei Zheng
  • Hao Zhou
Article
  • 12 Downloads

Abstract

In frequency diverse array (FDA) space–time adaptive processing (STAP) system, the spectrum of fast-moving target is non-well focused in the spatial–temporal plane, which causes a large mismatch between the actual and presumed target steering vector and dramatically degrades the performance of FDA-STAP system. In this paper, we propose a robust FDA-STAP approach based on multiple possible prior information constraints to resolve this issue and improve the performance of FDA-STAP system. In the proposed approach, multiple possible prior information, i.e., multiple large uncertainty regions, where the actual target possibly locate in spatial–temporal domains, are utilized to cover and constraint the estimated steering vector. The multiple uncertainty regions constraints make it possible to accurately estimate the fast-moving target steering vector. Moreover, to mitigate the influence of non-focused spatial–temporal spectrum of fast-moving target, a non-focused constraints is developed using the squared norm of space–time steering vector to avoid the estimated steering vector converge to the non-focused region of fast-moving target. Finally, the proposed robust FDA-STAP is converted into a non-convex quadratically constrained quadratic programming problem, and the semidefinite relaxation technique is employed to obtain the estimated target steering vector. Numerical results indicate that the proposed method has superior performance than other methods, including well-maintained main beam direction and significant performance improvement.

Keywords

Robust FDA-STAP Fast-moving target Non-focused spatial–temporal spectrum Multiple possible prior information Semidefinite relaxation (SDR) 

Notes

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 61501501, Grant 61571459 and Grant 61501504. The authors would like to thank the editor and the anonymous reviewers for their insightful comments that improved the quality of the paper.

References

  1. Antonik, P., Wicks, M. C., Griffiths, H. D., & Baker, C. J. (2006). Frequency diverse array radars. In Proceedings of the IEEE Radar Conference (pp. 215–217), Verona, NY, USA, April 2006.Google Scholar
  2. Baizert, P., Hale, T. B., Temple, M. A., & Wicks, M. C. (2006). Forwardlooking radar GMTI benefits using a linear frequency diverse array. Electronics Letters, 42, 1311–1312.CrossRefGoogle Scholar
  3. Beck, A., & Eldar, Y. C. (2007). Doubly constrained robust Capon beamformer with ellipsoidal uncertainty sets. IEEE Transactions on Signal Processing, 55, 753–758.MathSciNetCrossRefzbMATHGoogle Scholar
  4. Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge Univ. Press.CrossRefzbMATHGoogle Scholar
  5. Carlson, B. D. (1988). Covariance matrix estimation errors and diagonal loading in adaptive arrays. IEEE Transactions on Aerospace and Electronic Systems, 24, 397–401.CrossRefGoogle Scholar
  6. Chen, C. Y., & Vaidyanathan, P. P. (2007). Quadratically constrained beamforming robust against direction-of-arrival mismatch. IEEE Transactions on Signal Processing, 55, 4139–4150.MathSciNetCrossRefzbMATHGoogle Scholar
  7. Elnashar, A. (2008). Efficient implementation of robust adaptive beamforming based on worst-case performance optimization. IET Signal Processing, 2, 381–393.CrossRefGoogle Scholar
  8. Feng, Y., Liao, G., Xu, J., Zhu, S., & Zeng, C. (2018). Robust beamforming using multiple constraints relaxation. In Proceedings 2018 IEEE 10th sensor array and multichannel signal processing workshop (SAM) (pp. 514–518), Sheffield, South Yorkshire, United Kingdom, July 2018.Google Scholar
  9. Gao, K., Wang, W.-Q., Cai, J. Y., & Xiong, J. (2016). Decoupled frequency diverse array range-angle-dependent beampattern synthesis using nonlinearly increasing frequency offsets. IET Microwaves, Antennas & Propagation, 10, 880–884.CrossRefGoogle Scholar
  10. Gui, R., Wang, W.-Q., Cui, C., & So, H.-C. (2018). Coherent pulsed-FDA radar receiver design with time-variance consideration: SINR and CRB analysis. IEEE Transactions on Signal Processing, 66, 200–214.MathSciNetCrossRefzbMATHGoogle Scholar
  11. Hassanien, A., Vorobyov, S. A., & Wong, K. M. (2008). Robust adaptive beamforming using sequential programming: An iterative solution to the mismatch problem. IEEE Signal Processing Letters, 15, 733–736.CrossRefGoogle Scholar
  12. Huang, J., Tong, K.-F., & Baker, C. J. (2008). Frequency diverse array with beam scanning feature. In Proceedings of the international symposium on IEEE antennas and propagation (pp. 1–4), San Diego, CA, USA, July 2008.Google Scholar
  13. Huang, J., Tong, K. F., & Baker, C. (2009). Frequency diverse array: Simulation and design. In Proceedings loughborough antennas and propagation conference (pp. 253–256), Loughborough, UK, November 2009.Google Scholar
  14. Khabbazibasmenj, A., Vorobyov, S. A., & Hassanien, A. (2012). Robust adaptive beamforming based on steering vector estimation with as little as possible prior information. IEEE Transactions on Signal Processing, 60, 2974–2987.MathSciNetCrossRefzbMATHGoogle Scholar
  15. Khan, W., & Qureshi, I. M. (2014). Frequency diverse array radar with time-dependent frequency offset. IEEE Antennas and Wireless Propagation Letters, 13, 758–761.CrossRefGoogle Scholar
  16. Khan, W., Qureshi, I. M., Basit, A., & Khan, W. (2016). Range-bins-based MIMO frequency diverse array radar with logarithmic frequency offset. IEEE Antennas and Wireless Propagation Letters, 15, 885–888.CrossRefGoogle Scholar
  17. Khan, W., Qureshi, I. M., & Saeed, S. (2015). Frequency diverse array radar with logarithmically increasing frequency offset. IEEE Antennas and Wireless Propagation Letters, 14, 499–502.CrossRefGoogle Scholar
  18. Klemm, R. (2006). Principles of space–time adaptive processing (3rd ed.). London: IET.CrossRefGoogle Scholar
  19. Li, Q., Liao, B., Huang, L., Guo, C., Liao, G., & Zhu, S. (2016). A robust STAP method for airborne radar with array steering vector mismatch. Signal Processing, 128, 198–203.CrossRefGoogle Scholar
  20. Li, J., Stoica, P., & Wang, Z. (2003). On robust Capon beamforming and diagonal loading. IEEE Transactions on Signal Processing, 51, 1702–1715.CrossRefGoogle Scholar
  21. Li, J., Stoica, P., & Wang, Z. (2004). Doubly constrained robust Capon beamformer. IEEE Transactions on Signal Processing, 52, 2407–2423.CrossRefGoogle Scholar
  22. Liao, B., Tsui, K. M., & Chan, S. C. (2011). Robust beamforming with magnitude response constraints using iterative second-order cone programming. IEEE Transactions on Antennas and Propagation, 59, 3477–3482.MathSciNetCrossRefzbMATHGoogle Scholar
  23. Liu, Y. M., Hang, R., Wang, L., & Nehorai, A. (2017). The random frequency diverse array: A new antenna structure for uncoupled direction-range direction in active sensing. IEEE Journal of Selected Topics in Signal Processing, 11, 295–308.CrossRefGoogle Scholar
  24. Luo, Z. Q., Ma, W. K., So, A. M. C., Ye, Y., & Zhang, S. (2010). Semidefinite relaxation of quadratic optimization problems. IEEE Signal Processing Magazine, 27, 20–34.CrossRefGoogle Scholar
  25. Melvin, W. L. (2004). A STAP overview. IEEE Aerospace and Electronic Systems Magazine, 19, 19–35.CrossRefGoogle Scholar
  26. Qin, S., Zhang, Y. D., Amin, M. G., & Gini, F. (2017). Frequency diverse coprime arrays with coprime frequency offsets for multitarget localization. IEEE Journal of Selected Topics in Signal Processing, 11, 321–335.CrossRefGoogle Scholar
  27. Reed, I. S., Mallett, J. D., & Brennan, L. E. (1974). Rapid convergence rate in adaptive arrays. IEEE Transactions on Aerospace and Electronic Systems, 10, 853–863.CrossRefGoogle Scholar
  28. Sammartino, P. F., & Baker, C. J. (2009). Developments in the frequency diverse bistatic system. In Proceedings IEEE radar conference (pp. 1–5), Pasadena, CA, USA, May 2009.Google Scholar
  29. Sammartino, P. F., Baker, C. J. and Griffiths, H. D. (2010). Range-angle dependent waveform. In Proceedings IEEE radar conference (pp. 511–515), Ispra, Italy, May 2010.Google Scholar
  30. Sammartino, P. F., Baker, C. J., & Griffiths, H. D. (2013). Frequency diverse MIMO techniques for radar. IEEE Transactions on Aerospace and Electronic Systems, 49, 201–222.CrossRefGoogle Scholar
  31. Secmen, M., Demir, S., Hizal, A., & Eker, T. (2007). Frequency diverse array antenna with periodic time modulated pattern in range and angle. In Proceedings IEEE radar conference (pp. 427–430), Piscataway, NJ, USA, April 2007.Google Scholar
  32. Shao, H., Dai, J., Xiong, J., Chen, H., & Wang, W.-Q. (2016). Dot-shaped range-angle beampattern synthesis for frequency diverse array. IEEE Antennas and Wireless Propagation Letters, 15, 1703–1706.CrossRefGoogle Scholar
  33. Vorobyov, S. A., Chen, H., & Gershman, A. B. (2008). On the relationship between robust minimum variance beamformers with probabilistic and worst-case distrortionless response constraints. IEEE Transactions on Signal Processing, 56, 5719–5724.MathSciNetCrossRefzbMATHGoogle Scholar
  34. Vorobyov, S. A., Gershman, A. B., & Luo, Z. (2003). Robust adaptive beamforming using worst-case performance optimization: A solution to the signal mismatch problem. IEEE Transactions on Signal Processing, 51, 313–324.CrossRefGoogle Scholar
  35. Wang, C., Xu, J., Liao, G., Xu, X., & Zhang, Y. (2017). A range ambiguity resolution approach for high-resolution and wide-swath SAR imaging using frequency diverse array. IEEE Journal of Selected Topics in Signal Processing, 11, 336–346.CrossRefGoogle Scholar
  36. Wang, W.-Q. (2013). Phased-MIMO Radar with frequency diversity for range-dependent beamforming. IEEE Sensors Journal, 13, 1320–1328.CrossRefGoogle Scholar
  37. Wang, W.-Q., & Shao, H. (2014). Range-angle localization of targets by a double-pulse frequency diverse array radar. IEEE Journal of Selected Topics in Signal Processing, 8, 106–114.CrossRefGoogle Scholar
  38. Ward, J. (1994). Space-time adaptive processing for airborne radar. Lincoln Lab, MIT, Lexington, MA, USA, Tech. Rep. 1015.Google Scholar
  39. Antonik P., Wicks, M. C., Griffiths, H. D., & Baker, C. J. (2006). Multimission multi-mode waveform diversity. In Proceedings of the IEEE radar conference (pp. 580–582), Verona, NY, USA, April 2006.Google Scholar
  40. Xu, J., Liao, G., Huang, L., & So, H.-C. (2017). Robust adaptive beamforming for fast-moving target detection with FDA-STAP radar. IEEE Transactions on Signal Processing, 65, 973–984.MathSciNetCrossRefzbMATHGoogle Scholar
  41. Xu, J., Liao, G., & So, H.-C. (2016). Space-time adaptive processing with vertical frequency diverse array for range-ambiguous clutter suppression. IEEE Transactions on Geoscience and Remote Sensing, 54, 5352–5364.CrossRefGoogle Scholar
  42. Xu, J., Liao, G., Zhu, S., & Huang, L. (2015a). Response vector constrained robust LCMV beamforming based on semidefinite programming. IEEE Transactions on Signal Processing, 63, 5720–5732.MathSciNetCrossRefzbMATHGoogle Scholar
  43. Xu, J., Liao, G., Zhu, S., Huang, L., & So, H.-C. (2015b). Joint range and angle estimation using MIMO radar with frequency diverse array. IEEE Transactions on Signal Processing, 63, 3396–3410.MathSciNetCrossRefzbMATHGoogle Scholar
  44. Xu, J., Liao, G., Zhu, S., & So, H.-C. (2015c). Deceptive jamming suppression with frequency diverse MIMO radar. Signal Processing, 113, 9–17.CrossRefGoogle Scholar
  45. Xu, J., Zhu, S., & Liao, G. (2015d). Range ambiguous clutter suppression for airborne FDA-STAP radar. IEEE Journal of Selected Topics in Signal Processing, 9, 1620–1631.CrossRefGoogle Scholar
  46. Xu, J., Zhu, S., & Liao, G. (2015e). Space-time-range adaptive processing for airborne radar systems. IEEE Sensors Journal, 15, 1602–1610.CrossRefGoogle Scholar
  47. Yao, A.-M., Rocca, P., Wu, W., Massa, A., & Fang, D.-G. (2017a). Synthesis of time-modulated frequency diverse arrays for short-range multi-focusing. IEEE Journal of Selected Topics in Signal Processing, 11, 282–294.CrossRefGoogle Scholar
  48. Yao, A.-M., Wu, W., & Fang, D.-G. (2016). Frequency diverse array antenna using time-modulated optimized frequency offset to obtain time-invariant spatial fine focusing beampattern. IEEE Transactions on Antennas and Propagation, 64, 4434–4446.MathSciNetCrossRefzbMATHGoogle Scholar
  49. Yao, A.-M., Wu, W., & Fang, D.-G. (2017b). Solutions of time-invariant spatial focusing for multi-targets using time modulated frequency diverse antenna arrays. IEEE Transactions on Antennas and Propagation, 65, 552–566.CrossRefGoogle Scholar
  50. Yu, Z. L., Er, M. H., & Ser, W. (2008). A novel adaptive beamformer based on semidefinite programming (SDP) with constraints on magnitude response. IEEE Transactions on Antennas and Propagation, 56, 1297–1307.MathSciNetCrossRefzbMATHGoogle Scholar
  51. Yu, Z. L., Gu, Z. H., Zhou, J. J., Li, Y. Q., Ser, W., & Er, M. H. (2010). Arobust adaptive beamformer based on worst-case semi-definite programming. IEEE Transactions on Signal Processing, 58, 5914–5919.MathSciNetCrossRefzbMATHGoogle Scholar
  52. Yu, Z. L., Ser, W., Er, M. H., Gu, Z. H., & Li, Y. Q. (2009). Robust adaptive beamformers based on worst-case optimization and constraints on magnitude response. IEEE Transactions on Signal Processing, 57, 2615–2628.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Air and Missile Defense CollegeAir Force Engineering UniversityXi’anChina
  2. 2.Collaborative Innovation Center of Information Sensing and UnderstandingXi’anChina
  3. 3.National Laboratory of Radar Signal ProcessingXidian UniversityXi’anChina

Personalised recommendations