An optimal adaptive thresholding based sub-histogram equalization for brightness preserving image contrast enhancement
- 2 Downloads
Abstract
In this paper, a new adaptive thresholding based sub-histogram equalization (ATSHE) scheme is proposed for contrast enhancement and brightness preservation with retention of basic image features. The histogram of an input image is divided into different sub-histogram using adaptive thresholding intensity values. The number of threshold values or sub-histograms of the image are not fixed, but depends on the peak signal-to-noise ratio (PSNR) of the thresholded image. Histogram clipping is also used here to control the undesired enhancement of resultant image thus avoiding over-enhancement. Median value of the original histogram gives the threshold value of clipping process. The main objective of proposed method is to improve contrast enhancement with preservation of mean brightness value, structural similarity index (SSIM) and information content of the images. Image contrast enhancement is examined by well-known enhancement assessment parameters such as contrast per pixel and modified measure of enhancement. The mean brightness preservation of the image is evaluated by using absolute mean brightness error value and feature preservation qualities are checked through SSIM and PSNR values. Through the proposed routine, the enhanced images achieve a good trade-off between features enhancement, low contrast boosting and brightness preservation in addition with the natural feel of the original image. In particular, the proposed ATSHE scheme due to its adaptive nature of threshold selection can successfully enhance images under oodles of weak illumination situations such as backlighting effects, non-uniform illumination low contrast and dark images.
Keywords
Adaptive thresholding Brightness preservation Contrast enhancement Peak signal-to-noise ratio Sub-histogram equalization Color satellite imagesNotes
Acknowledgements
The authors wish to thank the editors and anonymous referees for their constructive criticism and valuable suggestions.
References
- Abdullah-Al-Wadud, M. (2007). A dynamic histogram equalization for image contrast enhancement. IEEE Transactions on Consumer Electronics, 53, 593–600.CrossRefGoogle Scholar
- Agaian, S. S., Silver, B., & Panetta, K. A. (2007). Transform coefficient histogram-based image enhancement algorithms using contrast entropy. IEEE Transactions on Image Processing, 16(3), 741–758.MathSciNetCrossRefGoogle Scholar
- Arora, S., Acharya, J., Verma, A., & Panigrahi, P. K. (2008). Multilevel thresholding for image segmentation through a fast statistical recursive algorithm. Pattern Recognition Letters, 29(2), 119–125.CrossRefGoogle Scholar
- Bhandari, A. K., Kumar, A., Chaudhary, S., & Singh, G. K. (2017). A new beta differential evolution algorithm for edge preserved colored satellite image enhancement. Multidimensional Systems and Signal Processing, 28(2), 495–527.CrossRefzbMATHGoogle Scholar
- Bhandari, A. K., Kumar, A., & Padhy, P. K. (2011). Enhancement of low contrast satellite images using discrete cosine transform and singular value decomposition. World Academy of Science, Engineering and Technology, 55, 35–41.Google Scholar
- Bhandari, A. K., Kumar, A., Singh, G. K., & Soni, V. (2016). Dark Satellite image enhancement using knee transfer function and gamma correction based on DWT-SVD. Multidimensional System and Signal Process., 27(2), 453–476.CrossRefGoogle Scholar
- Bhandari, A. K., Maurya, S., & Meena, A. K. (2018). Social spider optimization based optimally weighted Otsu thresholding for image enhancement. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. https://doi.org/10.1109/JSTARS.2018.2870157.Google Scholar
- Bhandari, A. K., Singh, V. K., Kumar, A., & Singh, G. K. (2014a). Cuckoo search algorithm and wind driven optimization based study of satellite image segmentation for multilevel thresholding using Kapur’s entropy. Expert Systems with Applications, 41(7), 3538–3560.CrossRefGoogle Scholar
- Bhandari, A. K., Soni, V., Kumar, A., & Singh, G. K. (2014b). Cuckoo search algorithm based satellite image contrast image and brightness enhancement using DWT-SVD. ISA Transactions, 53(4), 1286–1296.CrossRefGoogle Scholar
- Celik, T., & Tjahjadi, T. (2010). Unsupervised colour image segmentation using dual-tree complex wavelet transform. Computer Vision and Image Understanding, 114(7), 813–826.CrossRefGoogle Scholar
- Chen, S.-D., & Ramli, A. R. (2003a). Minimum mean brightness error bi-histogram equalization in contrast enhancement. IEEE Transactions on Consumer Electronics, 49(4), 1310–1319.CrossRefGoogle Scholar
- Chen, S.-D., & Ramli, A. R. (2003b). Contrast enhancement using recursive-mean-separate histogram equalization for scalable brightness preservation. IEEE Transactions on Consumer Electronics, 49(4), 1301–1309.CrossRefGoogle Scholar
- Cheng, H.-D., & Xu, H. (2000). A novel fuzzy logic approach to contrast enhancement. Pattern Recognition, 33(5), 809–819.CrossRefGoogle Scholar
- Demirel, H., Ozcinar, C., & Anbarjafari, G. (2010). Satellite image contrast enhancement using discrete wavelet transform and singular value decomposition. IEEE Geoscience and Remote Sensing Letters, 7(2), 333–337.CrossRefGoogle Scholar
- Fu, X., Liao, Y., Zeng, D., Huang, Y., Zhang, X.-P., & Ding, X. (2015). A probabilistic method for image enhancement with simultaneous illumination and reflectance estimation. IEEE Transactions on Image Processing, 24(12), 4965–4977.MathSciNetCrossRefGoogle Scholar
- Fu, X., Zeng, D., Huang, Y., Liao, Y., Ding, X., & Paisley, J. (2016). A fusion-based enhancing method for weakly illuminated images. Signal Processing, 129, 82–96.CrossRefGoogle Scholar
- Gonzalez, R. C., & Woods, R. E. (2011). Digital image processing (3rd ed.). Upper Saddle River: Pearson Prentice Hall.Google Scholar
- Hasikin, K., & Isa, N. A. M. (2014). Adaptive fuzzy contrast factor enhancement technique for low contrast and nonuniform illumination images. Signal, Image and Video Processing, 8(8), 1591–1603.CrossRefGoogle Scholar
- He, K., Sun, J., & Tang, X. (2011). Single image haze removal using dark channel prior. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(12), 2341–2353.CrossRefGoogle Scholar
- Huang, S.-C., & Yeh, C.-H. (2013). Image contrast enhancement for preserving mean brightness without losing image features. Engineering Applications of Artificial Intelligence, 26(5), 1487–1492.CrossRefGoogle Scholar
- Kim, Y. T. (1997). Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Transactions on Consumer Electronics, 43, 1–8.CrossRefGoogle Scholar
- Kong, N. S. P., Ibrahim, H., Ooi, C. H., Chieh, D. C. J. (2009). Enhancement of microscopic images using modified self-adaptive plateau histogram equalization. In International conference on comput. computer technology and development, 2009 (Vol. 308–310).Google Scholar
- Kong, T. L., & Isa, N. A. M. (2017). Bi-histogram modification method for non-uniform illumination and low-contrast images. Multimedia Tools and Applications, 77, 8955–8978.CrossRefGoogle Scholar
- Lai, Y.-R., Tsai, P.-C., Yao, C.-Y., & Ruan, S.-J. (2017). Improved local histogram equalization with gradient-based weighting process for edge preservation. Multimedia Tools and Applications, 76, 1585–1613.CrossRefGoogle Scholar
- Li, C., & Bovik, A. C. (2010). Content-partitioned structural similarity index for image quality assessment. Signal Processing: Image Communication, 25(7), 517–526.Google Scholar
- Liu, B., Jin, W., Chen, Y., Liu, C., & Li, L. (2011). Contrast enhancement using non-overlapped sub-blocks and local histogram projection. IEEE Transactions on Consumer Electronics, 57(2), 583–588.CrossRefGoogle Scholar
- Niu, Y., Wu, X., & Shi, G. (2016). Image enhancement by entropy maximization and quantization resolution upconversion. IEEE Transactions on Image Processing, 25, 4815–4828.MathSciNetCrossRefGoogle Scholar
- Ooi, C. H., & Isa, N. A. M. (2010). Quadrants dynamic histogram equalization for contrast enhancement. IEEE Transactions on Consumer Electronics, 56, 2552–2559.CrossRefGoogle Scholar
- Peli, E. (1990). Contrast in complex images. JOSA A, 7(10), 2032–2040.CrossRefGoogle Scholar
- Priyadharsini, R., Sharmila, T. S., & Rajendran, V. (2018). A wavelet transform based contrast enhancement method for underwater acoustic images. Multidimensional Systems and Signal Processing, 29(4), 1845–1859.CrossRefGoogle Scholar
- Sangee, N., Sangee, A., & Choi, H. K. (2010). Image contrast enhancement using bi-histogram equalization with neighbourhood metrics. IEEE Transactions on Consumer Electronics, 56(4), 2552–2559.CrossRefGoogle Scholar
- Santhi, K., & Wahida Banu, R. S. D. (2015). Adaptive contrast enhancement using modified histogram Equalization. Optik, 126, 1809–1814.CrossRefGoogle Scholar
- Shakeri, M., Dezfoulian, M. H., Khotanlou, H., Barati, A. H., & Masoumi, Y. (2017). Image contrast enhancement using fuzzy clustering with adaptive cluster parameter and sub-histogram equalization. Digital Signal Processing, 62, 224–237.CrossRefGoogle Scholar
- Shanmugavadivu, P., & Balasubramanian, K. (2014). Thresholded and optimized histogram equalization for contrast enhancement of images. Computers & Electrical Engineering, 40, 757–768.CrossRefGoogle Scholar
- Sheet, D., Garud, H., Suveer, A., Mahadevappa, M., & Chatterjee, J. (2010). Brightness preserving dynamic fuzzy histogram equalization. IEEE Transactions on Consumer Electronics, 56, 2475–2480.CrossRefGoogle Scholar
- Sidike, P., Sagan, V., Qumsiyeh, M., Maimaitijiang, M., Essa, A., & Asari, V. (2018). Adaptive trigonometric transformation function with image contrast and color enhancement: Application to unmanned aerial system imagery. IEEE Geoscience and Remote Sensing Letters, 15(3), 404–408.CrossRefGoogle Scholar
- Sim, K. S., Tso, C. P., & Tan, Y. Y. (2007). Recursive sub-image histogram equalization applied to gray scale images. Pattern Recognition Letters, 28(10), 1209–1221.CrossRefGoogle Scholar
- Singh, K., & Kapoor, R. (2014a). Image enhancement using exposure based sub image histogram equalization. Pattern Recognition Letters, 36, 10–14.CrossRefGoogle Scholar
- Singh, K., & Kapoor, R. (2014b). Image enhancement via median-mean based sub-image-clipped histogram equalization. Optik, 125, 4646–4651.CrossRefGoogle Scholar
- Singh, K., Kapoor, R., & Sinha, S. K. (2015). Enhancement of low exposure images via recursive histogram equalization algorithms. Optik, 126, 2619–2625.CrossRefGoogle Scholar
- Singh, K., Vishwakarma, D. K., Walia, G. S., & Kapoor, R. (2016). Contrast enhancement via texture region based histogram equalization. Journal of Modern Optics, 63(15), 1444–1450.CrossRefGoogle Scholar
- Sundaram, M., Ramar, K., Arumugam, N., & Prabin, G. (2011). Histogram modified local contrast enhancement for mammogram images. Applied Soft Computing, 11(8), 5809–5816.CrossRefGoogle Scholar
- Tang, J. R., & Isa, N. A. M. (2017). Bi-histogram equalization using modified histogram bins. Applied Soft Computing, 55, 31–43.CrossRefGoogle Scholar
- Thum, C. (1984). Measurement of the entropy of an image with application to image focusing. Optica Acta: International Journal of Optics, 31(2), 203–211.MathSciNetCrossRefGoogle Scholar
- Wan, Y., Chen, Q., & Zhang, B. M. (1999). Image enhancement based on equal area dualistic sub-image histogram equalization method. IEEE Transactions on Consumer Electronics, 45, 68–75.CrossRefGoogle Scholar
- Wang, X., & Chen, L. (2017). An effective histogram modification scheme for image contrast enhancement. Signal Processing: Image Communication, 58, 187–198.Google Scholar
- Wong, C. Y., Jiang, G., Rahman, M. A., Liu, S., Lin, S. C.-F., Kwok, N., et al. (2016). Histogram equalization and optimal profile compression based approach for colour image enhancement. Journal of Visual Communication and Image Representation, 38, 802–813.CrossRefGoogle Scholar
- Xiao, Y., Cao, Z., & Yuan, J. (2014). Entropic image thresholding based on GLGM histogram. Pattern Recognition Letters, 40(15), 47–55.CrossRefGoogle Scholar