Advertisement

3-D modelling of rectangular circuits as the particular class of spatially interconnected systems on the plane

  • Dongdong Zhao
  • Krzysztof Galkowski
  • Bartlomiej Sulikowski
  • Li Xu
Article
  • 30 Downloads

Abstract

This paper is devoted to modelling the spatially interconnected system, particularly the regular circuit displayed in the plane as a 3-D system with two spatial indeterminates and one temporal indeterminate. First, the singular and nonsingular 3-D models of the Fornasini–Marchesini type are derived. Next, these models are transformed into the equivalent Roesser models. This work is a basis for further control applications of spatially interconnected systems on the plane.

Keywords

System modelling Circuits distributed on the plane Spatially interconnected systems Fornasini–Marchesini model Roesser model 

Notes

References

  1. Ahn, C. K., Shi, P., & Basin, M. V. (2015). Two-dimensional dissipative control and filtering for roesser model. IEEE Transactions on Automatic Control, 60(7), 1745–1759.MathSciNetCrossRefGoogle Scholar
  2. Antsaklis, P . J., & Michel, A . N. (2007). A linear systems primer (Vol. 1). Boston: Birkhäuser.zbMATHGoogle Scholar
  3. Beck, C., & D’Andrea, R. (2004). Noncommuting multidimensional realization theory: Minimality, reachability, and observability. IEEE Transactions on Automatic Control, 49(10), 1815–1822.MathSciNetCrossRefGoogle Scholar
  4. Bose, N., Buchberger, B., & Guiver, J. (2003). Multidimensional systems theory and applications. Dordrecht: Kluwer.Google Scholar
  5. Bose, N. K. (1982). Applied multidimensional systems theory. New York: Van Nostrand Reinhold.zbMATHGoogle Scholar
  6. Boudellioua, M. S. (2005). Equivalence to Smith form over a multivariate polynomial ring. In The fourth internatinal workshop on multidimensional systems (pp. 259–262).Google Scholar
  7. Boudellioua, M. S., Galkowski, K., & Rogers, E. (2017). Equivalent 2-D nonsingular Roesser models for discrete linear repetitive processes. International Journal of Control, 1–9.  https://doi.org/10.1080/00207179.2017.1414307
  8. Chen, C. (1995). Linear system theory and design. Oxford: Oxford University Press, Inc.Google Scholar
  9. Cockburn, J. C. (2000). Multidimensional realizations of systems with parametric uncertainty. In Proceedings of MTNS (p. 6).Google Scholar
  10. Cunha, D. P. (2013). Reduced order state-space models for 2-D systems. Master’s thesis, Dept. Elect. Comput. Eng., Univ. Porto, Portugal.Google Scholar
  11. Ding, D.-W., Wang, H., & Li, X. (2015). \({H}_{-}/{H}_{\infty }\) fault detection observer design for two-dimensional roesser systems. Systems & Control Letters, 82, 115–120.MathSciNetCrossRefGoogle Scholar
  12. Dorf, R . C., & Bishop, R . H. (2011). Modern control systems. London: Pearson.zbMATHGoogle Scholar
  13. Du, C., Xie, L., & Zhang, C. (2001). \({H}_\infty \) control and robust stabilization of two-dimensional systems in Roesser models. Automatica, 37(2), 205–211.MathSciNetCrossRefGoogle Scholar
  14. Feng, Z., & Xu, L. (2018). Optimization of coordinate transformation matrix for \({H}_\infty \) static-output-feedback control of 2-D discrete systems in FM second model. Multidimensional Systems and Signal Processing, 29(4), 1727–1737.MathSciNetCrossRefGoogle Scholar
  15. Feng, Z.-Y., Wu, Q., & Xu, L. (2012). \({H}_{\infty }\) control of linear multidimensional discrete systems. Multidimensional Systems and Signal Processing, 23(3), 381–411.MathSciNetCrossRefGoogle Scholar
  16. Fornasini, E., & Marchesini, G. (1976). State space realization theory of two-dimensional filters. IEEE Transactions on Automatic Control, 21(4), 484–492.MathSciNetCrossRefGoogle Scholar
  17. Friedland, B. (1986). Control systems design: An introduction to state-space methods. New York: McGraw-Hill.zbMATHGoogle Scholar
  18. Galkowski, K. (2001). State space realization of linear 2-D systems with extensions to the general nD (\(n>2\)) case. London: Springer.Google Scholar
  19. Kaczorek, T. (1985). Two-dimensional linear systems. London: Springer.zbMATHGoogle Scholar
  20. Kaczorek, T. (1988). Singular models of 2-D systems. In Proceedings of the 12th World Congress on Scientific Computation, Paris (France).Google Scholar
  21. Kailath, T. (1980). Linear systems. Upper Saddle River: Prentice-Hall.zbMATHGoogle Scholar
  22. Lin, Z., & Bruton, L. (1989). BIBO stability of inverse 2-D digital filters in the presence of nonessential singularities of the second kind. IEEE Transactions on Circuits and Systems, 36(2), 244–254.MathSciNetCrossRefGoogle Scholar
  23. Lin, Z., Lam, J., Galkowski, K., & Xu, S. (2001). A constructive approach to stabilizability and stabilization of a class of nD systems. Multidimensional Systems and Signal Processing, 12(3–4), 329–343.MathSciNetCrossRefGoogle Scholar
  24. Lu, W.-S. (1995). On robust stability of 2-D discrete systems. IEEE Transactions on Automatic Control, 40(3), 502–506.MathSciNetCrossRefGoogle Scholar
  25. Magni, J.-F. (2006). User manual of the linear fractional representation toolbox version 2.0. Systems Control and Flight Dynamics Department. http://w3.onera.fr/smac/lfrt. Accessed 17 Mar 2014.
  26. Paszke, W., Dabkowski, P., Rogers, E., & Gałkowski, K. (2015). New results on strong practical stability and stabilization of discrete linear repetitive processes. Systems & Control Letters, 77, 22–29.MathSciNetCrossRefGoogle Scholar
  27. Roesser, R. (1975). A discrete state-space model for linear image processing. IEEE Transactions on Automatic Control, 20(1), 1–10.MathSciNetCrossRefGoogle Scholar
  28. Rogers, E., Galkowski, K., & Owens, D. H. (2007). Control Systems theory and applications for linear repetitive processes. Control and information sciences. Berlin, Heidelberg: Springer.zbMATHGoogle Scholar
  29. Sulikowski, B. (2018). Robust \({H}_2\) control of ladder circuits modeled as a subclass of \(2\)D systems. In Proceedings of the 17th annual European control conference (ECC2018) (pp. 888–893). Limassol, Cyprus.Google Scholar
  30. Sulikowski, B., Galkowski, K., & Kummert, A. (2015). Proportional plus integral control of ladder circuits modeled in the form of two-dimensional (2D) systems. Multidimesional Systems and Signal Processing, 26(1), 267–290.MathSciNetCrossRefGoogle Scholar
  31. Wang, K., Chen, M. Z., & Chen, G. (2017). Realization of a transfer function as a passive two-port RC ladder network with a specified gain. International Journal of Circuit Theory and Applications, 45(11), 1467–1481.CrossRefGoogle Scholar
  32. Xu, L., & Yan, S. (2010). A new elementary operation approach to multidimensional realization and LFR uncertainty modeling: The SISO case. Multidimensional Systems and Signal Processing, 21(4), 343–372.MathSciNetCrossRefGoogle Scholar
  33. Xu, L., Yan, S., Lin, Z., & Matsushita, S. (2012). A new elementary operation approach to multidimensional realization and LFR uncertainty modeling: The MIMO case. IEEE Transactions on Circuits and Systems-I, 59(3), 638–651.MathSciNetCrossRefGoogle Scholar
  34. Yan, S., Xu, L., Zhang, Y., Cai, Y., & Zhao, D. (2018). Order evaluation to new elementary operation approach for MIMO multidimensional systems. International Journal of Control, (just-accepted):1–20.Google Scholar
  35. Yan, S., Xu, L., Zhao, Q., & Tian, Y. (2014). Elementary operation approach to order reduction for Roesser state-space model of multidimensional systems. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(3), 789–802.CrossRefGoogle Scholar
  36. Yan, S., Zhao, D., Xu, L., Cai, Y., & Li, Q. (2017). A novel elementary operation approach with Jordan transformation to order reduction for Roesser state-space model. Multidimensional Systems and Signal Processing, 28(4), 1417–1442.MathSciNetCrossRefGoogle Scholar
  37. Zerz, E. (1999). LFT representations of parametrized polynomial systems. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 46(3), 410–416.MathSciNetCrossRefGoogle Scholar
  38. Zerz, E. (2000). Topics in multidimensional linear systems theory. London: Springer.zbMATHGoogle Scholar
  39. Zhao, D., Yan, S., Matsushita, S., & Xu, L. (2017). Order reduction for Roesser state-space model based on a certain system of equations. In 2017 10th international workshop on multidimensional (nD) systems (nDS) (pp. 1–5).Google Scholar
  40. Zhao, D., Yan, S., & Xu, L. (2018). Eigenvalue trim approach to exact order reduction for Roesser state-space model of multidimensional systems. Multidimensional Systems and Signal Processing, 29(4), 1905–1934.MathSciNetCrossRefGoogle Scholar
  41. Zhou, K., Doyle, J . C., & Glover, K. (1996). Robust and optimal control (Vol. 40). New Jersey: Prentice hall.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Intelligent MechatronicsAkita Prefectural UniversityAkitaJapan
  2. 2.Institute of Control and Computation EngineeringUniversity of Zielona GoraZielona GoraPoland

Personalised recommendations