Advertisement

Multidimensional Systems and Signal Processing

, Volume 30, Issue 1, pp 295–310 | Cite as

An optimal robust adaptive beamforming in the presence of unknown mutual coupling

  • Julan XieEmail author
  • Xue Yang
  • Huiyong Li
  • Xu Wang
  • Jun Li
Article
  • 86 Downloads

Abstract

An optimal robust adaptive beamformer in the presence of unknown mutual coupling is proposed. In this proposed beamformer, envelopes of the received signals in the presence of unknown mutual coupling and their corresponding powers can be estimated by utilizing the Toeplitz characteristics of the mutual coupling matrix. Both of them are used to reconstruct the interference-plus-noise covariance matrix in a novel expression. A subspace orthogonal to the interference space can be obtained by performing the eigenvalue decomposition on this reconstructed matrix. Hence, the desired signal and the noise are retained by projecting the observed data to this orthogonal space. Finally, the optimal weight vector is obtained by passing the desired signal with the maximum output power criterion. The proposed method maintains excellent performance in the presence of unknown mutual coupling and the simulation results are consistent with the theoretical analysis.

Keywords

Robust adaptive beamformer Unknown mutual coupling Matrix reconstruction Eigenvalue decomposition 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 61301262, 61371184) and the Fundamental Research Funds for the Central Universities (No. ZYGX2016J027).

References

  1. Capon, J. (1969). High-resolution frequency-wavenumber spectrum analysis. Proceedings of the IEEE, 57(8), 1408–1418.CrossRefGoogle Scholar
  2. Carlson, B. D. (1988). Covariance matrix estimation errors and diagonal loading in adaptive arrays. IEEE Transactions on Aerospace and Electronic Systems, 24(4), 397–401.CrossRefGoogle Scholar
  3. Chang, L., & Yeh, C. C. (1992). Performance of DMI and eigenspace-based beamformers. IEEE Transactions on Antennas and Propagation, 40(11), 1336–1347.CrossRefGoogle Scholar
  4. Du, L., Li, J., & Stoica, P. (2010). Fully automatic computation of diagonal loading levels for robust adaptive beamforming. IEEE Transactions on Aerospace and Electronic Systems, 46(1), 449–458.CrossRefGoogle Scholar
  5. Feldman, D. D., & Griffiths, L. J. (1994). A projection approach for robust adaptive beamforming. IEEE Transactions on Signal Processing, 42(4), 867–876.CrossRefGoogle Scholar
  6. Gu, Y. J., & Leshem, A. (2012). Robust adaptive beamforming based on interference covariance matrix reconstruction and steering vector estimation. IEEE Transactions on Signal Processing, 60(7), 3881–3885.MathSciNetCrossRefzbMATHGoogle Scholar
  7. Huang, F., Sheng, W. X., & Ma, X. F. (2009). Adaptive beamforming in the presence of mutual coupling. In IET conference publications, IET international radar conference 2009 (p. 551).  https://doi.org/10.1049/cp.2009.0491.
  8. Huang, L., Zhang, J., Xu, X., & Ye, Z. F. (2015). Robust Adaptive beamforming with a novel interference-plus-noise covariance matrix reconstruction method. IEEE Transactions on Signal Processing, 63(7), 1643–1650.MathSciNetCrossRefzbMATHGoogle Scholar
  9. Kikuchi, S., Tsuji, H., & Sano, A. (2006). Autocalibration algorithm for robust Capon beamforming. IEEE Antennas and Wireless Propagation Letters, 5(1), 251–255.CrossRefGoogle Scholar
  10. Li, J., Stoica, P., & Wang, Z. S. (2003). On robust Capon beamforming and diagonal loading. IEEE Transactions on Signal Processing, 51(7), 1702–1715.CrossRefGoogle Scholar
  11. Liao, B., Zhang, Z. G., & Chan, S. C. (2016). DOA estimation and tracking of ULAs with mutual coupling. IEEE Transactions on Aerospace and Electronic Systems, 48(1), 891–905.CrossRefGoogle Scholar
  12. Qian, J. H., & He, Z. S. (2016). Mainlobe interference suppression with eigenprojection algorithm and similarity constraints. Electronics Letters, 52(3), 228–230.CrossRefGoogle Scholar
  13. Qian, J. H., He, Z. S., & Zhang, W. (2017). Robust adaptive beamforming for multiple-input multiple-output radar with spatial filtering techniques. Signal Processing, 143, 152–160.CrossRefGoogle Scholar
  14. Shen, F., Chen, F. F., & Song, J. Y. (2015). Robust adaptive beamforming based on steering vector estimation and covariance matrix reconstruction. IEEE Communications Letters, 19(9), 1636–1639.CrossRefGoogle Scholar
  15. Somasundaram, S. D., & Jakobsson, A. (2014). Degradation of covariance reconstruction-based robust adaptive beamformers. Sensor Signal Processing for Defence (SSPD), 2014, 1–5.Google Scholar
  16. Tsai, Y. T., Su, B., Tsao, Y., & Wang, S. S. (2016). Adaptive subspace-constrained diagonal loading. In 2016 Asia-Pacific signal and information processing association annual summit and conference (APSIPA) (pp. 1–4).Google Scholar
  17. Yang, J., Li, R. Q., & Xi, X. Q. (2016). A adaptive beamforming design in low sample number conditions based on diagonal loading algorithm. IEEE International Conference on Signal and Image Processing (ICSIP), 2016, 755–758.Google Scholar
  18. Yang, J., Liao, G. S., Li, J., Lei, Y., & Wang, X. (2017). Robust beamforming with imprecise array geometry using steering vector estimation and interference covariance matrix reconstruction. Multidimensional Systems and Signal Processing, 28(2), 451–469.CrossRefzbMATHGoogle Scholar
  19. Ye, Z., & Liu, C. (2009). Non-sensitive adaptive beamforming against mutual coupling. IET Signal Processing, 3(1), 1–6.CrossRefGoogle Scholar
  20. Yuan, X. L., & Gan, L. (2017). Robust adaptive beamforming via a novel subspace method for interference covariance matrix reconstruction. Signal Processing, 130, 233–242.CrossRefGoogle Scholar
  21. Yuan, X. L., Gan, L., & Liao, H. S. (2016). A novel robust adaptive beamforming based on interference covariance matrix reconstruction over annulus uncertainty sets. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, E99A(7), 1473–1477.CrossRefGoogle Scholar
  22. Zhang, Y. P., Li, Y. J., & Gao, M. J. (2016a). Robust adaptive beamforming based on the effectiveness of reconstruction. Signal Processing, 120, 572–579.CrossRefGoogle Scholar
  23. Zhang, Z. Y., Liu, W., Leng, W., Wang, A. G., & Shi, H. P. (2016b). Interference-plus-Noise covariance matrix reconstruction via spatial power spectrum sampling for robust adaptive beamforming. IEEE Signal Processing Letters, 23(1), 121–125.CrossRefGoogle Scholar
  24. Zhuang, J., & Manikas, A. (2013). Interference cancellation beamforming robust to pointing errors. IET Signal Processing, 7(2), 120–127.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Julan Xie
    • 1
    Email author
  • Xue Yang
    • 1
  • Huiyong Li
    • 1
  • Xu Wang
    • 1
  • Jun Li
    • 1
  1. 1.School of Electronic EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations