Advertisement

Synchronization problem of 2-D coupled dynamical networks with communication delays and missing measurements

  • Zhaoxia DuanEmail author
  • Jian Shen
Article
  • 98 Downloads

Abstract

This study addresses a synchronization problem for an array of discrete-time two-dimensional (2-D) coupled dynamical networks with time-varying communication delays and missing measurements, which is oriented from the well-known Roesser model. For such a 2-D complex network model, both network dynamics and couplings evolve in two independent directions. The missing measurements are described by a binary switching sequence satisfying a conditional probability distribution. The purpose of this study is to establish sufficient easy-to-verify conditions ensuring the global mean-square synchronization through constructing an energy-like Lyapunov–Krasovskii function, making use of the Kronecker product and applying some stochastic analysis techniques. Finally, two simulation examples are presented to illustrate the effectiveness of the proposed synchronization scheme.

Keywords

Two-dimensional networks Time-varying communication delay Mean-square synchronization Missing measurement 

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China under Grant No. 61703137, and the Fundamental Research Funds for the Central Universities under Grant No. 2017B01814.

References

  1. Alzoubi, K., Li, X. Y., Wang, Y., Wan, P. J., & Frieder, O. (2003). Geometric spanners for wireless ad hoc networks. IEEE Transactions on Parallel and Distributed Systems, 14(4), 408–421.CrossRefGoogle Scholar
  2. Bax, A., & Freeman, R. (1981). Investigation of complex networks of spin-spin coupling by two-dimensional NMR. Journal of Magnetic Resonance, 44(3), 542–561.Google Scholar
  3. Biggs, N. (1974). Algebraic graph theory, Cambridge tracks in mathematics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  4. Bose, N. K. (2003). Multidimensional systems theory and applications. New York: Kluwer.Google Scholar
  5. Boyd, S. P., Ghaoui, L. E., Feron, E., & Balakrishnan, V. (1994). Linear matrix inequalities in system and control theory. Philadephia: SIAM.CrossRefzbMATHGoogle Scholar
  6. Dai, J., Guo, Z., & Wang, S. (2013). Robust \({H_\infty }\) control for a class of 2-D nonlinear discrete stochastic systems. Circuits systems and Signal Processing, 32(5), 2297–2316.MathSciNetCrossRefGoogle Scholar
  7. Ding, D., Wang, Z., Alsaadi, F. E., & Shen, Bo. (2015). Receding horizon filtering for a class of discrete time-varying nonlinear systems with multiple missing measurements. International Journal of General Systems, 44(2), 198–211.MathSciNetCrossRefzbMATHGoogle Scholar
  8. Du, C., Xie, L., & Zhang, C. (2001). \({H_\infty }\) control and robust stabilization of two-dimensional systems in Roesser models. Automatica, 37(2), 205–211.MathSciNetCrossRefzbMATHGoogle Scholar
  9. Duan, Z., Xiang, Z., & Karimi, H. R. (2014a). Stability and \(l_1\)-gain analysis for positive 2D T-S fuzzy state-delayed systems in the second FM model. Neurocomputing, 2014(142), 209–215.Google Scholar
  10. Duan, Z., Xiang, Z., & Karimi, H. R. (2014b). Robust stabilization of 2D state-delayed stochastic systems with randomly occurring uncertainties and nonlinearities. International Journal of Systems Science, 45(7), 1402–1415.MathSciNetCrossRefzbMATHGoogle Scholar
  11. Egerstedt, M. (2011). Complex networks: Degrees of control. Nature, 473(7346), 158–159.CrossRefGoogle Scholar
  12. Fei, Z., Wang, D., Gao, H., & Zhang, Y. (2009). Discrete-time complex networks: A new synchronisation stability criterion. International Journal of Systems Science, 40(9), 931–936.MathSciNetCrossRefzbMATHGoogle Scholar
  13. Godsil, C., & Royle, G. (2001). Algebraic graph theory, volume 207 of graduate texts in mathematics. Berlin: Springer.zbMATHGoogle Scholar
  14. Horn, R. A., & Johnson, C. R. (1987). Matrix analysis. Cambridge: Cambridge University Press.Google Scholar
  15. Jiang, X., Han, Q. L., & Yu, X. (2005). Stability criteria for linear discrete-time systems with interval-like time-varying delay. American Control Conference, 4, 2817–2822.Google Scholar
  16. Kaczorek, T. (1985). Two-dimensional linear systems. Berlin: Springer.zbMATHGoogle Scholar
  17. Levnajic, Z., & Tadic, B. (2010). Stability and chaos in coupled 2-D maps on gene regulatory network of bacterium E-coli. Chaos, 20(3), 033115.CrossRefGoogle Scholar
  18. Li, P., & Lam, J. (2011). Synchronization in networks of genetic oscillators with delayed coupling. Asian Journal of Control, 13(5), 713–725.MathSciNetCrossRefzbMATHGoogle Scholar
  19. Li, X., Wang, W., & Li, L. (2015). \({H_\infty }\) control for 2-D T-S fuzzy FMII model with stochastic perturbation. International Journal of Systems Science, 46(4), 1–16.MathSciNetzbMATHGoogle Scholar
  20. Liang, J., Wang, Z., & Liu, X. (2011). Distributed state estimation for discrete-time sensor networks with randomly varying nonlinearities and missing measurements. IEEE Transactions on Neural Networks, 22(3), 486–496.CrossRefGoogle Scholar
  21. Liang, J., Wang, Z., & Liu, X. (2013). Robust staibisation for a class of stochastic two-dimensional non-linear systems with time-varying delays. IET Control Theory and Applications, 7(13), 1699–1710.MathSciNetCrossRefGoogle Scholar
  22. Liang, J., Wang, Z., Liu, X., & Louvieris, P. (2012). Robust synchronization for 2-D discrete-time coupled dynamical networks. IEEE Transactions on Neural Networks and Learning Systems, 23(6), 942–953.CrossRefGoogle Scholar
  23. Liang, J., Wang, Z., Liu, Y., & Liu, X. (2008). Robust synchronization of an array of coupled stochastic discrete-time delayed neural networks. IEEE Transactions on Neural Networks, 19(11), 1910–1921.CrossRefGoogle Scholar
  24. Liu, Y., Alsaadi, F. E., Yin, X., & Wang, Y. (2015). Robust \({H_\infty }\) filtering for discrete nonlinear delayed stochastic systems with missing measurements and randomly occurring nonlinearities. International Journal of General Systems, 44(2), 169–181.MathSciNetCrossRefzbMATHGoogle Scholar
  25. Liu, Y., Slotine, J., & Barabasi, A. (2011). Controllability of complex networks. Nature, 473(7346), 167–173.CrossRefGoogle Scholar
  26. Liu, X., & Zou, Y. (2010). A consensus problem for a class of vehicles with 2-D dynamics. Multidimensional Systems and Signal Processing, 21(4), 373–389.MathSciNetCrossRefzbMATHGoogle Scholar
  27. Liu, X., & Zou, Y. (2014). Stability analysis for a class of complex dynamical networks with 2-D dynamics. Multidimensional Systems and Signal Processing, 25(3), 531–540.CrossRefzbMATHGoogle Scholar
  28. Luo, Y., Wang, Z., Liang, J., Wei, G., & Alsaadi, F. E. (2017). \( H_\infty \) control for 2-D fuzzy systems with interval time-varying delays and missing measurements. IEEE Transactions on Cybernetics, 47(2), 365–377.Google Scholar
  29. Luo, Y., Wei, G., Liu, Y., & Ding, X. (2015). Reliable \( H_\infty \) state estimation for 2-D discrete systems with infinite distributed delays and incomplete observations. International Journal of General Systems, 44(2), 155–168.MathSciNetCrossRefzbMATHGoogle Scholar
  30. Lv, J. H., & Chen, G. (2005). A time-varying complex dynamical network model and its controlled synchronization criteria. IEEE Transactions on Automatic Control, 50(6), 841–846.MathSciNetCrossRefzbMATHGoogle Scholar
  31. Marszalek, W. (1984). Two-dimensional state-space discrete models for hyperbolic partial differential equations. Applied Mathematical Modelling, 8(1), 11–14.MathSciNetCrossRefzbMATHGoogle Scholar
  32. Savkin, A. V., & Petersen, I. R. (1997). Robust filtering with missing data and a deterministic description of noise and uncertainty. International Journal of Systems Science, 28(4), 373–378.CrossRefzbMATHGoogle Scholar
  33. Savkin, A. V., Petersen, I. R., & Moheimani, S. O. R. (1999). Model validation and state estimation for uncertain continuous-time systems with missing discrete-continuous data. Computers and Electrical Engineering, 25(1), 29–43.CrossRefGoogle Scholar
  34. Shen, B., Wang, Z., & Liu, X. (2011). Bounded, synchronization and state estimation for discrete time-varying stochastic complex networks over a finite horizon. IEEE Transactions on Neural Networks, 22, 145–157.CrossRefGoogle Scholar
  35. Steur, E., Michiels, W., Huijberts, H., & Nijmeijer, H. (2014). Networks of diffusively time-delay coupled systems: Conditions for synchronization and its relation to the network topology. Physica D Nonlinear Phenomena, 277(6), 22–39.MathSciNetCrossRefzbMATHGoogle Scholar
  36. Wang, X., & Chen, G. (2002). Synchronization in small-world dynamical networks. International Journal of Bifurcation and Chaos, 12(1), 187–192.CrossRefGoogle Scholar
  37. Wang, Y., Wang, Z., & Liang, J. (2009). Global synchronization for delayed complex networks with randomly occurring nonlinearities and multiple stochastic disturbances. Journal of Physics A Mathematical and Theoretical, 42(13), 1243–1247.MathSciNetCrossRefzbMATHGoogle Scholar
  38. Wang, Y., Wang, Z., Liang, J., Li, Y., & Du, M. (2010). Synchronization of stochastic genetic oscillator networks with time delays and Markovian jumping parameters. Neurocomputing, 73(13–15), 2532–2539.CrossRefGoogle Scholar
  39. Wu, Z. G., & Park, J. H. (2013). Synchronization of discrete-time neural networks with time delays subject to missing data. Neurocomputing, 122, 418–424.CrossRefGoogle Scholar
  40. Xiong, W., Hayat, T., & Cao, J. (2014). Interval stability of time-varying two-dimensional hierarchical discrete-time multi-agent systems. IET Control Theory and Applications, 9(1), 114–119.MathSciNetCrossRefGoogle Scholar
  41. Yang, F., Wang, Z., Ho, D., & Gani, M. (2007). Robust \({H_\infty }\) control with missing measurements and time delays. IEEE Transactions on Automatic Control, 52(9), 1666–1672.MathSciNetCrossRefzbMATHGoogle Scholar
  42. Yin, C., Dadras, S., Huang, X., Mei, J., Malek, H., & Cheng, Y. (2017a). Energy-saving control strategy for lighting system based on multivariate extremum seeking with newton algorithm. Energy Conversion and Management, 142, 504–522.CrossRefGoogle Scholar
  43. Yin, C., Huang, X., Chen, Y., Dadras, S., Zhong, S. M., & Cheng, Y. (2017b). Fractional-order exponential switching technique to enhance sliding mode control. Applied Mathematical Modelling, 44, 705–726.MathSciNetCrossRefGoogle Scholar
  44. Zarrop, M. B., & Wellstead, P. E. (2002). 2-D and EM techniques for cross directional estimation and control. IEE Proceedings Control Theory and Applications, 149(5), 457–462.CrossRefGoogle Scholar
  45. Zhang, H., Zhao, M., Wang, Z., & Wu, Z. (2014). Adaptive synchronization of an uncertain coupling complex network with time-delay. Nonlinear Dynamics, 77(3), 643–653.MathSciNetCrossRefzbMATHGoogle Scholar
  46. Zhang, J., Wang, Z., Ding, D., & Liu, X. (2015). \( H_\infty \) state estimation for discrete-time delayed neural networks with randomly occurring quantizations and missing measurements. Neurocomputing, 148, 388–396.CrossRefGoogle Scholar
  47. Zheleznyak, A., & Chua, L. O. (1994). Coexistence of low- and high dimensional spatio-temporal chaos in a chain of dissipatively coupled Chuas circuits. International Journal of Bifurcation and Chaos, 4(3), 639–674.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.College of Energy and Electrical EngineeringHohai UniversityNanjingPeople’s Republic of China
  2. 2.School of ScienceNanjing University of Science and TechnologyNanjingPeople’s Republic of China

Personalised recommendations