Advertisement

Multidimensional Systems and Signal Processing

, Volume 29, Issue 4, pp 1529–1552 | Cite as

Algebraic technique for computationally efficient Hahn moment invariants

  • Vishal Kumar Pandey
  • Jyotsna Singh
  • Harish Parthasarathy
Article
  • 86 Downloads

Abstract

In image processing applications such as scene analysis problems, moments are used as image descriptors of three dimensional objects. These moments may be sensitive to several transformations such as translation and scaling. Three-dimensional moment invariants are possible solution to such problems. Recently, Tchebichef and Krawtchouk moments and their invariants are proposed. These moment invariants are obtained using indirect method or image normalisation method. Perfect invariance cannot be achieved when moment invariants are not obtained from their corresponding polynomials. In this paper, the translation and scale invariance of Hahn moments for two and three dimensional symmetrical and non symmetrical images are derived directly from discrete orthogonal Hahn polynomials using algebraical method. This also enhances the computational efficiency in terms of processing time as compared to the method based on geometric moment invariants. The performance of proposed descriptor is evaluated using binary characters and 3D images. Hahn moment which is generalization of Tchebichef and Krawtchouk moment, give better results with translation and scale invariance and classification problems under clean and noisy image conditions.

Keywords

Discrete orthogonal moment Hahn polynomial Scale invariant Translation invariant 

References

  1. Alghoniemy, M., & Tewfik, A. H. (2000). Image watermarking by moment invariants. In International conference on image processing (ICIP) (Vol. 2, pp. 73–76, 10–13).Google Scholar
  2. Chen, Z., & Sun, S. K. (2010). A Zernike moment phase-based descriptor for local image representation and matching. IEEE Transactions on Image Processing, 19(1), 205–219.MathSciNetCrossRefzbMATHGoogle Scholar
  3. Chong, C.-W., Raveendran, P., & Mukundan, R. (2004). Translation and scale invariants of Legendre moments. Pattern Recognition, 37, 119–129.CrossRefzbMATHGoogle Scholar
  4. Christopher, L. A., William, A., & Cohen-Gadol, A. A. (2013). Future directions in 3-dimensional imaging and neurosurgery: Stereoscopy and autostereoscopy. Neurosurgery, 72, A131–A138.CrossRefGoogle Scholar
  5. Comtet, L. (1974). Advanced combinatorics: The art of finite and infinite expansions. Dordrecht, The Netherlands: D. Reidel.CrossRefzbMATHGoogle Scholar
  6. Dudani, S. A., Breeding, K. J., & McGhee, R. B. (1977). Aircraft identification by moment invariants. IEEE Transactions on Computers, 26(1), 39–46.CrossRefGoogle Scholar
  7. Fei-Fei, L., Fergus, R., & Perona, P. (2004). Learning generative visual models from few training examples: An incremental Bayesian approach tested on 101 object categories. CVPR workshop on generative-model based vision.Google Scholar
  8. Flusser, J. (1993). Pattern recognition by affine moment invariants. Pattern Recognition, 26(1), 167–174.MathSciNetCrossRefGoogle Scholar
  9. Fu, B., Zhou, J.-Z., Chen, W.-Q., & Zhang, G.-J. (2005). Translation invariants of modified Chebyshev moments. In Proceedings of the fourth international conference on machine learning and cybernetics. Guangzhou, August 18–21, 2005.Google Scholar
  10. Goh, H. A., Chong, C. W., Besar, R., Abas, F. S., & Sim, K. S. (2009). Translation and scale invariants of Hahn moments. International Journal of Image and Graphics, 9(2), 271–285.CrossRefGoogle Scholar
  11. Gonzalez, M., Dinelle, K., Vafai, N., Heffernan, N., McKenzie, J., Appel-Cresswell, S., et al. (2013). Novel spatial analysis method for PET data using 3D moment invariants: Applications to Parkinson’s disease. Neuroimage, 68, 11–21.CrossRefGoogle Scholar
  12. Goshtasby, A. (1985). Template matching in rotated images. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI–7, 338–344.CrossRefGoogle Scholar
  13. Heywood, M. I. (1995). Fractional central moment method for moment-invariant object classification. Proceedings of the Institution of Electrical Engineers, 142(4), 213–219.MathSciNetGoogle Scholar
  14. Hu, M. K. (1962). Visual pattern recognition by moment invariants. IRE Transaction on Information Theory, 8, 179–187.zbMATHGoogle Scholar
  15. Khotanzad, A., & Hong, Y. H. (1990). Invariant image recognition by Zernike moments. IEEE Transaction on Pattern Analysis and Machine Intelligence, 12(5), 489–497.CrossRefGoogle Scholar
  16. Kim, H. S., & Lee, H. K. (2003). Invariant image watermark using Zernike moments. IEEE Transactions on Circuits and Systems for Video Technology, 13(8), 766–775.CrossRefGoogle Scholar
  17. Koekoek, R., Lesky, P., & Swarttouw, R. (2010). Hypergeometric orthogonal polynomials and their q-analogues, Springer monographs in mathematics. Berlin: Springer-Verlag.Google Scholar
  18. Liao, S. X., & Pawlak, M. (1998). On the accuracy of Zernike moments for image analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(12), 1358–1364.CrossRefGoogle Scholar
  19. Mahdian, B., & Saic, S. (2007). Detection of copy-move forgery using a method based on blur moment invariants. Forensic Science International, 171(2–3), 180–189.CrossRefGoogle Scholar
  20. Mukundan, R., Ong, S. H., & Lee, P. A. (2001). Image analysis by Tchebichef moments. IEEE Transactions on Image Processing, 10(9), 1357–1364.MathSciNetCrossRefzbMATHGoogle Scholar
  21. Nikiforov, A. F., Suslov, S. K., & Uvarov, V. B. (1991). Classical orthogonal polynomials of a discrete variable. Berlin: Springer.CrossRefzbMATHGoogle Scholar
  22. Ong, L. Y., Chong, C. W., & Besar, R. (2006). Scale invariants of three-dimensional Legendre moments. In Proceedings of the \(18^{th}\) international conference on pattern recognition (ICPR06) (pp. 141–144).Google Scholar
  23. Pandey, V. K., Singh, J. & Parthasarathy, H. (2016). Translation and scale invariance of 2D and 3D Hahn moments. In 3rd IEEE International Conference on Signal Processing and Integrated Networks (SPIN). Noida, India.Google Scholar
  24. Papakostas, G. A., Boutalis, Y. S., Karras, D. A., & Mertzios, B. G. (2007). A new class of Zernike moments for computer vision applications. Information Sciences, 177(13), 2802–2819.MathSciNetCrossRefzbMATHGoogle Scholar
  25. Shabanifard, M., Shayesteh, M. G., & Akhaee, M. A. (2013). Forensic detection of image manipulation using the Zernike moments and pixel-pair histogram. IET Image Processing, 7(9), 817–828.CrossRefGoogle Scholar
  26. Spanier, J., & Oldham, K. B. (1987). The Pochhammer polynomials \((x)_n\). In Ch. 18 in an atlas of functions (pp. 149–165). Washington, DC: Hemisphere.Google Scholar
  27. Teague, M. R. (1980). Image analysis via the general theory of moments. Journal of the Optical Society of America, 70, 920–930.MathSciNetCrossRefGoogle Scholar
  28. Wu, H., Coatrieux, J. L., & Shu, H. (2013). New algorithm for constructing and computing scale invariants of \(3D\) Tchebichef moments. Mathematical problems in engineering, 2013, 813606. doi: 10.1155/2013/813606.
  29. Yap, P.-T., Paramesran, R., & Ong, S.-H. (2003). Image analysis by Krawtchouk moments. IEEE Transactions on Image Processing, 12(11), 1367–1377.MathSciNetCrossRefGoogle Scholar
  30. Yap, P. T., Paramesran, R., & Ong, S. H. (2007). Image analysis using Hahn moments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(11), 2057–2062.CrossRefGoogle Scholar
  31. Zhou, J., Shu, H., Zhu, H., Toumoulin, C., & Luo, L. (2005). Image analysis by discrete orthogonal Hahn moments. In Proceedings of second international conference image analysis and recognition (pp. 524–531).Google Scholar
  32. Zhu, H. Q., Shu, H. Z., Xia, T., Luo, L. M., & Coatrieux, J. L. (2007). Translation and scale invariants of Tchebichef moments. Pattern Recognition, 40, 2530–2542.CrossRefzbMATHGoogle Scholar
  33. Zunic, J., & Rosin, P. L. (2011). Measuring linearity of open planar curve segments. Image and Vision Computing, 29(12), 873–879.CrossRefGoogle Scholar
  34. Zunic, D., & Zunic, J. (2014). Shape ellipticity from Hu moment invariants. Applied Mathematics and Computation, 226, 406–414.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Vishal Kumar Pandey
    • 1
  • Jyotsna Singh
    • 1
  • Harish Parthasarathy
    • 1
  1. 1.Division of Electronics and Communication EngineeringNetaji Subhas Institute of TechnologyDwarkaIndia

Personalised recommendations