Advertisement

Direction of arrival estimation using adaptive directional time-frequency distributions

  • Nabeel Ali Khan
  • Sadiq Ali
  • Magnus Jansson
Article

Abstract

Time-frequency distributions (TFDs) allow direction of arrival (DOA) estimation algorithms to be used in scenarios when the total number of sources are more than the number of sensors. The performance of such time–frequency (t–f) based DOA estimation algorithms depends on the resolution of the underlying TFD as a higher resolution TFD leads to better separation of sources in the t–f domain. This paper presents a novel DOA estimation algorithm that uses the adaptive directional t–f distribution (ADTFD) for the analysis of close signal components. The ADTFD optimizes the direction of kernel at each point in the t–f domain to obtain a clear t–f representation, which is then exploited for DOA estimation. Moreover, the proposed methodology can also be applied for DOA estimation of sparse signals. Experimental results indicate that the proposed DOA algorithm based on the ADTFD outperforms other fixed and adaptive kernel based DOA algorithms.

Keywords

High resolution TFDs Instantaneous frequency estimation MUSIC Direction of arrival estimation Adaptive directional Time-frequency distribution 

References

  1. Aissa-El-Bey, A., Linh-Trung, N., Abed-Meraim, K., Belouchrani, A., & Grenier, Y. (2007). Underdetermined blind separation of nondisjoint sources in the time-frequency domain. Signal Processing, IEEE Transactions on, 55, 897–907.MathSciNetCrossRefGoogle Scholar
  2. Amin, M. G., & Zhang, Y. (2000). Direction finding based on spatial time-frequency distribution matrices. Digital Signal Processing, 10(4), 325–339.CrossRefGoogle Scholar
  3. Belouchrani, A., & Amin, M. (1999). Time-frequency MUSIC. IEEE Signal Processing Letters, 6, 109–110.CrossRefGoogle Scholar
  4. Belouchrani, A., Amin, M., Thirion-Moreau, N., & Zhang, Y. (2013). Source separation and localization using time-frequency distributions: An overview. IEEE Signal Processing Magazine, 30(6), 97–107.CrossRefGoogle Scholar
  5. Boashash, B., Khan, N. A., & Ben-Jabeur, T. (2015). Time-frequency features for pattern recognition using high-resolution TFDs: A tutorial review. Digital Signal Processing, 40, 1–30.MathSciNetCrossRefGoogle Scholar
  6. Chabriel, G., Kleinsteuber, M., Moreau, E., Shen, H., Tichavsky, P., & Yeredor, A. (2014). Joint matrices decompositions and blind source separation: A survey of methods, identification, and applications. IEEE Signal Processing Magazine, 31, 34–43.CrossRefGoogle Scholar
  7. Flandrin, P., & Borgnat, P. (2010). Time-frequency energy distributions meet compressed sensing. Signal Processing, IEEE Transactions on, 58(6), 2974–2982.MathSciNetCrossRefGoogle Scholar
  8. Ghofrani, S., Amin, M.G. & Zhang, Y.D. (2013). High-resolution direction finding of non-stationary signals using matching pursuit. Signal Processing (vol. 93, no. 12, pp. 3466–3478). Special Issue on Advances in Sensor Array Processing in Memory of Alex B. Gershman.Google Scholar
  9. Guo, L., Zhang, Y., Wu, Q., & Amin, M. (2015). Doa estimation of sparsely sampled nonstationary signals. In IEEE China Summit and International Conference on Signal and Information Processing (ChinaSIP) (pp. 300–304).Google Scholar
  10. Heidenreich, P., Cirillo, L., & Zoubir, A. (2009). Morphological image processing for FM source detection and localization. Signal Processing, 89(6), 1070–1080.CrossRefzbMATHGoogle Scholar
  11. Jones, D. L., & Baraniuk, R. G. (1995). An adaptive optimal-kernel time-frequency representation. IEEE Transactions on Signal Processing, 43(10), 2361–2371.CrossRefGoogle Scholar
  12. Kassis, C. E., Picheral, J., & Mokbel, C. (2010). Advantages of nonuniform arrays using root-MUSIC. Signal Processing, 90(2), 689–695.CrossRefzbMATHGoogle Scholar
  13. Khan, N.A. & Boashash, B. (2015). Multi-component instantaneous frequency estimation using locally adaptive directional time frequency distributions. International Journal of Adaptive Control and Signal Processing.Google Scholar
  14. Krim, H., & Viberg, M. (1996). Two decades of array signal processing research: The parametric approach. IEEE Signal Processing Magazine, 13, 67–94.CrossRefGoogle Scholar
  15. Larocque, J. R., Reilly, J. P., & Ng, W. (2002). Particle filters for tracking an unknown number of sources. IEEE Transactions on Signal Processing, 50, 2926–2937.CrossRefGoogle Scholar
  16. Mallat, S., & Zhang, Z. (1993). Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 41, 3397–3415.CrossRefzbMATHGoogle Scholar
  17. Mu, W., Amin, M. G., & Zhang, Y. (2003). Bilinear signal synthesis in array processing. IEEE Transactions on Signal Processing, 51(1), 90–100.MathSciNetCrossRefzbMATHGoogle Scholar
  18. Rankine, L., Mesbah, M., & Boashash, B. (2007). IF estimation for multicomponent signals using image processing techniques in the time-frequency domain. Signal Processing, 87(6), 1234–1250.CrossRefzbMATHGoogle Scholar
  19. Saucan, A.A., Chonavel, T., Sintes, C. & Caillec, J.M.L. (2015). Track before detect doa tracking of extended targets with marked poisson point processes. In Information Fusion (Fusion), 2015 18th International Conference on (pp. 754–760).Google Scholar
  20. Sharif, W., Chakhchoukh, Y., & Zoubir, A. (2011). Robust spatial time-frequency distribution matrix estimation with application to direction-of-arrival estimation. Signal Processing, 91(11), 2630–2638.CrossRefzbMATHGoogle Scholar
  21. Steinwandt, J., de Lamare, R. C., & Haardt, M. (2013). Beamspace direction finding based on the conjugate gradient and the auxiliary vector filtering algorithms. Signal Processing, 93(4), 641–651.CrossRefGoogle Scholar
  22. Swindlehurst, A., & Kailath, T. (1992). A performance analysis of subspace-based methods in the presence of model errors. i. The music algorithm. IEEE Transactions on Signal Processing, 40, 1758–1774.CrossRefzbMATHGoogle Scholar
  23. Trees, H. L. V. (2002). Optimum array processing. New York: Wiley.CrossRefGoogle Scholar
  24. Yang, Y., Dong, X., Peng, Z., Zhang, W., & Meng, G. (2015). Component extraction for non-stationary multi-component signal using parameterized de-chirping and band-pass filter. IEEE Signal Processing Letters, 22(9), 1373–1377.CrossRefGoogle Scholar
  25. Zhang, Y.D., Amin, M.G., & Himed, B. (2012). Direction-of-arrival estimation of nonstationary signals exploiting signal characteristics. In 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA) (pp. 1223–1228), IEEE.Google Scholar
  26. Zhang, Y., Guo, L., Wu, Q., & Amin, M. (2015). Multi-sensor kernel design for time-frequency analysis of sparsely sampled nonstationary signals. In IEEE Radar Conference (RadarCon) (pp. 0896–0900).Google Scholar
  27. Zhang, H., Bi, G., Yang, W., Razul, S., & See, C. (2015). IF estimation of FM signals based on time-frequency image. IEEE Transactions on Aerospace and Electronic Systems, 51, 326–343.CrossRefGoogle Scholar
  28. Zhang, Y., Ma, W., & Amin, M. (2001). Subspace analysis of spatial time-frequency distribution matrices. IEEE Transactions on Signal Processing, 49, 747–759.CrossRefGoogle Scholar
  29. Zhao, L., Wang, L., Bi, G., Zhang, L., & Zhang, H. (2015). Robust frequency-hopping spectrum estimation based on sparse bayesian method. Wireless Communications, IEEE Transactions on, 14(2), 781–793.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Electrical EngineeringFederal Urdu UniversityIslamabadPakistan
  2. 2.Department of Electrical EngineeringUniversity of Engineering and TechnologyPeshawarPakistan
  3. 3.Signal Processing Lab, Department of Electrical EngineeringKTH-Royal Institute of TechnologyStockholmSweden

Personalised recommendations