Advertisement

Multidimensional Systems and Signal Processing

, Volume 28, Issue 4, pp 1499–1521 | Cite as

Subspace identification for closed-loop 2-D separable-in-denominator systems

  • Jinxu Cheng
  • Mengqi Fang
  • Youqing Wang
Article

Abstract

Identification for closed-loop two-dimensional (2-D) causal, recursive, and separable-in-denominator (CRSD) systems in the Roesser form is discussed in this study. For closed-loop 2-D CRSD systems, under feedback control condition, there exists some correlation between the unknown disturbances and future inputs which offers the fundamental limitation for utilizing standard open-loop 2-D CRSD systems subspace identification methods. In other words, the existing open-loop subspace approaches will result in biased estimates of plant parameters from closed-loop data. In this study, based on orthogonal projection and principal component analysis, novel 2-D CRSD subspace identification methods are developed, which are applicable to both open-loop and closed-loop data. Additionally, the whiteness external excitation case is discussed and subsequently modified instrument variables are adopted to improve the proposed subspace algorithm. An illustrative example of the injection molding process and several numerical examples are used to validate consistency and efficiency of the proposed subspace approaches for 2-D CRSD systems.

Keywords

Subspace algorithms Closed-loop 2-D CRSD model identification The white noise external excitation case Consistency and efficiency 

Notes

Acknowledgments

This study was supported by the National Natural Science Foundation of China under Grant 61374099 and the Program for New Century Excellent Talents in University under Grant NCET-13-0652.

References

  1. Bauer, D. (2005). Asymptotic properties of subspace estimators. Automatica, 41, 359–376.MathSciNetCrossRefzbMATHGoogle Scholar
  2. Chiuso, A. (2007). The role of vector autoregressive modeling in predictor-based subspace identification. Automatica, 43, 1034–1048.MathSciNetCrossRefzbMATHGoogle Scholar
  3. Chiuso, A., & Picci, G. (2005). Consistency analysis of some closed-loop subspace identification methods. Automatica, 41(3), 377–391.MathSciNetCrossRefzbMATHGoogle Scholar
  4. Favoreel, W., De Moor, B., & Van Overschee, P. (2000). Subspace state space system identification for industrial processes. Journal of Process Control, 10(2), 149–155.CrossRefGoogle Scholar
  5. Gustafsson, T. (2002). Subspace-based system identification: Weighting and pre-filtering of instruments. Automatica, 38(3), 433–443.MathSciNetCrossRefzbMATHGoogle Scholar
  6. Hinamoto, T. (1980). Realizations of a state-space model from two-dimensional input-output map. IEEE Transactions on Circuits and Systems, 27(1), 36–44.MathSciNetCrossRefzbMATHGoogle Scholar
  7. Hong, X., Lai, X., & Zhao, R. (2016). A fast design algorithm for elliptic-error and phase-error constrained LS 2-D FIR filters. Multidimensional Systems and Signal Processing, 27(2), 477–491.CrossRefzbMATHGoogle Scholar
  8. Huang, B., Ding, S. X., & Qin, S. J. (2005). Closed-loop subspace identification: An orthogonal projection approach. Journal of Process Control, 15(1), 53–66.CrossRefGoogle Scholar
  9. Huang, B., & Kadali, R. (2008). Dynamic modeling, predictive control and performance monitoring: A data-driven subspace approach. Berlin: Springer.zbMATHGoogle Scholar
  10. Jansson, M. (2003). Subspace identification and ARX modeling. In Proceedings of the 13th IFAC SYSID symposium.Google Scholar
  11. Kaczorek, T. (1985). Two-dimensional linear systems. Berlin: Springer.zbMATHGoogle Scholar
  12. Katayama, T. (2006). Subspace methods for system identification. Berlin: Springer.zbMATHGoogle Scholar
  13. Katayama, T., & Tanaka, H. (2007). An approach to closed-loop subspace identification by orthogonal decomposition. Automatica, 43(9), 1623–1630.MathSciNetCrossRefzbMATHGoogle Scholar
  14. Lashgari, B., Silverman, L. M., & Abramatic, J. F. (1983). Approximation of 2-D separable in denominator filters. IEEE Transactions on Circuits and Systems, 30(2), 107–121.MathSciNetCrossRefzbMATHGoogle Scholar
  15. Lin, W. L., Qin, S. J., & Ljung, L. (2004). On consistency of closed-loop subspace identification with innovation estimation. In 2004 43rd IEEE conference on decision and control (pp. 2195–2200).Google Scholar
  16. Liu, J. (2013). Observer-based higher order sliding mode control of power factor in three-phase AC/DC converter for hybrid electric vehicle applications. International Journal of Control, 87(6), 1117–1130.MathSciNetCrossRefzbMATHGoogle Scholar
  17. Liu, J., Laghrouche, S., Harmouche, M., & Wack, M. (2014). Adaptive-gain second-order sliding mode observer design for switching power converters. Control Engineering Practice, 30, 124–131.CrossRefGoogle Scholar
  18. Liu, T. (2012). A bias-eliminated subspace identification method for errors-in-variables systems. In International symposium on advanced control of chemical processes (ADCHEM) (pp. 10–13).Google Scholar
  19. Liu, T., Shao, C., & Wang, X. Z. (2013). Consistency analysis of orthogonal projection based closed-loop subspace identification methods. In European Control Conference (ECC) (pp.1428–1432).Google Scholar
  20. Ljung, L., & McKelvey, T. (1996). Subspace identification from closed loop data. Signal Processing, 52(2), 209–215.CrossRefzbMATHGoogle Scholar
  21. Nam, S. C., Abe, M., & Kawamata, M. (2007). GA-based design of 2D state-space digital filters with linear phase characteristics. Journal of Circuits, Systems, and Computers, 16(02), 287–303.CrossRefGoogle Scholar
  22. Pal, D., & Pillai, H. K. (2014). On restrictions of nD systems to 1-D subspaces. Multidimensional Systems and Signal Processing, 25(1), 115–144.MathSciNetCrossRefzbMATHGoogle Scholar
  23. Qin, S. J. (2006). An overview of subspace identification. Computers & Chemical Engineering, 30(10), 1502–1513.CrossRefGoogle Scholar
  24. Qin, S. J., & Ljung, L. (2003). Closed-loop subspace identification with innovation estimation. In Proceedings of the 13th IFAC SYSID symposium (pp. 887–892).Google Scholar
  25. Ramos, J. (1994). A subspace algorithm for identifying 2-D separable in denominator filters. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 41(1), 63–67.CrossRefzbMATHGoogle Scholar
  26. Ramos, J. A., Alenany, A., Shang, H., & dos Santos, P. J. L. (2011). Subspace algorithms for identifying separable-in-denominator two-dimensional systems with deterministic inputs. IET Control Theory & Applications, 5(15), 1748–1765.MathSciNetCrossRefGoogle Scholar
  27. Roesser, R. P. (1975). A discrete state-space model for linear image processing. IEEE Transactions on Automatic Control, 20(1), 1–10.MathSciNetCrossRefzbMATHGoogle Scholar
  28. Ruscio, D. (2009). Closed and open loop subspace system identification of the Kalman filter. Modeling, Identification and Control, 30(2), 71–86.CrossRefGoogle Scholar
  29. Shi, J., Gao, F., & Wu, T. J. (2005). Robust design of integrated feedback and iterative learning control of a batch process based on a 2D Roesser system. Journal of Process Control, 15(8), 907–924.CrossRefGoogle Scholar
  30. Shyu, J. J., Pei, S. C., Huang, Y. D., & Chen, Y. S. (2014). A new structure and design method for variable fractional-delay 2-D FIR digital filters. Multidimensional Systems and Signal Processing, 25(3), 511–529.CrossRefGoogle Scholar
  31. Söderström, T. (2007). Errors-in-variables methods in system identification. Automatica, 43(6), 939–958.MathSciNetCrossRefzbMATHGoogle Scholar
  32. Treasure, R., Sreeram, V., & Ngan, K. N. (2004). Balanced identification and model reduction of a separable denominator 2-D system. In 5th Asian control conference (pp. 2048–2052).Google Scholar
  33. van der Veen, G., van Wingerden, J. W., Bergamasco, M., Lovera, M., & Verhaegen, M. (2013). Closed-loop subspace identification methods: An overview. IET Control Theory & Applications, 7(10), 1339–1358.MathSciNetCrossRefGoogle Scholar
  34. Van Overschee, P., & De Moor, B. (1995). A unifying theorem for three subspace system identification algorithms. Automatica, 31(12), 1853–1864.MathSciNetCrossRefzbMATHGoogle Scholar
  35. Wang, D., Zilouchian, A., & Bai, Y. (2005). An algorithm for balanced approximation and model reduction of 2-D separable-in-denominator filters. Multidimensional Systems and Signal Processing, 16(4), 439–461.MathSciNetCrossRefzbMATHGoogle Scholar
  36. Wang, J., & Qin, S. J. (2002). A new subspace identification approach based on principal component analysis. Journal of Process Control, 12(8), 841–855.CrossRefGoogle Scholar
  37. Wang, J., & Qin, S. J. (2006). Closed-loop subspace identification using the parity space. Automatica, 42(2), 315–320.MathSciNetCrossRefzbMATHGoogle Scholar
  38. Wang, L., Mo, S., Qu, H., Zhou, D., & Gao, F. (2013). H\(\infty \) design of 2D controller for batch processes with uncertainties and interval time-varying delays. Control Engineering Practice, 20(10), 1321–1333.CrossRefGoogle Scholar
  39. Wu, L., Shi, P., Gao, H., & Wang, C. (2008). H\(\infty \) filtering for 2D Markovian jump systems. Automatica, 44(7), 1849–1858.MathSciNetCrossRefzbMATHGoogle Scholar
  40. Xiao, C., Sreeram, V., Liu, W.Q., & Venetsanopoulos, A.N. (1997). Identification and model reduction of 2-D systems via the extended impulse response Gramians. In American control conference (pp. 3567–3571).Google Scholar
  41. Yang, R., Xie, L., & Zhang, C. (2006). H-2 and mixed H-2/H-infinity control of two-dimensional systems in Roesser model. Automatica, 42, 1507–1514.CrossRefzbMATHGoogle Scholar
  42. Zhao, Y., Liebgott, H., & Cachard, C. (2015). Comparison of the existing tool localisation methods on two-dimensional ultrasound images and their tracking results. IET Control Theory & Applications, 9(7), 1124–1134.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.College of Information Science and TechnologyBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations