Multidimensional Systems and Signal Processing

, Volume 27, Issue 4, pp 989–1005 | Cite as

Fusion of block and keypoints based approaches for effective copy-move image forgery detection

  • Jiangbin Zheng
  • Yanan Liu
  • Jinchang Ren
  • Tingge Zhu
  • Yijun Yan
  • Heng Yang
Article

Abstract

Keypoint-based and block-based methods are two main categories of techniques for detecting copy-move forged images, one of the most common digital image forgery schemes. In general, block-based methods suffer from high computational cost due to the large number of image blocks used and fail to handle geometric transformations. On the contrary, keypoint-based approaches can overcome these two drawbacks yet are found difficult to deal with smooth regions. As a result, fusion of these two approaches is proposed for effective copy-move forgery detection. First, our scheme adaptively determines an appropriate initial size of regions to segment the image into non-overlapped regions. Feature points are extracted as keypoints using the scale invariant feature transform (SIFT) from the image. The ratio between the number of keypoints and the total number of pixels in that region is used to classify the region into smooth or non-smooth (keypoints) regions. Accordingly, block based approach using Zernike moments and keypoint based approach using SIFT along with filtering and post-processing are respectively applied to these two kinds of regions for effective forgery detection. Experimental results show that the proposed fusion scheme outperforms the keypoint-based method in reliability of detection and the block-based method in efficiency.

Keywords

Image forensics Copy-move image forgery detection  Adaptive fusion SIFT Zernike moments 

References

  1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., & Susstrunk, S. (2012). SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(11), 2274–2282.CrossRefGoogle Scholar
  2. Amerini, I., Ballan, L., Caldelli, R., Del Bimbo, A., & Serra, G. (2011). A sift-based forensic method for copy-move attack detection and transformation recovery. IEEE Transactions on Information Forensics and Security, 6(3), 1099–1110.CrossRefGoogle Scholar
  3. Amerini, I., Ballan, L., Caldelli, R., Del Bimbo, A., Del Tongo, L., & Serra, G. (2013). Copy-move forgery detection and localization by means of robust clustering with J-Linkage. Signal Processing: Image Communication, 28(6), 659–669.Google Scholar
  4. Bashar, M., Noda, K., Ohnishi, N., & Mori, K. (2010). Exploring duplicated regions in natural images. IEEE Transactions on Image Processing. doi:10.1109/TIP.2010.2046599.
  5. Bayram, S., Sencar, H. T., & Memon, N. (2009). An efficient and robust method for detecting copy-move forgery. In IEEE international conference on acoustics, speech and signal processing (pp. 1053–1056).Google Scholar
  6. Bilmes, J. A. (1998). A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models. International Computer Science Institute, 4(510), 126.Google Scholar
  7. Bo, X., Junwen, W., Guangjie, L., & Yuewei, D. (2010). Image copy-move forgery detection based on SURF. In 2010 international conference on multimedia information networking and security (MINES) (pp. 889–892). IEEE.Google Scholar
  8. Cheng, G., Han, J., Guo, L., Liu, Z., Bu, S., & Ren, J. (2015). Effective and efficient midlevel visual elements-oriented land-use classification using VHR remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 53(8), 4238–4249.CrossRefGoogle Scholar
  9. Cheng, G., Han, J., Zhou, P., & Guo, L. (2014). Multi-class geospatial object detection and geographic image classification based on collection of part detectors. Isprs Journal of Photogrammetry and Remote Sensing, 98(1), 119–132.CrossRefGoogle Scholar
  10. Christlein, V., Riess, C., Jordan, J., Riess, C., & Angelopoulou, E. (2012). An evaluation of popular copy-move forgery detection approaches. IEEE Transactions on Information Forensics and Security, 7(6), 1841–1854.CrossRefGoogle Scholar
  11. Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381–395.MathSciNetCrossRefGoogle Scholar
  12. Fridrich, J., Soukal, D., & Lukas, J. (2003). Detection of copy-move forgery in digital images. In Proceedings of digital forensic research workshop.Google Scholar
  13. Han, J., Zhang, D., Cheng, G., Guo, L., & Ren, J. (2015a). Object detection in optical remote sensing images based on weakly supervised learning and high-level feature learning. IEEE Transactions on Geoscience and Remote Sensing, 53(6), 3325–3337.CrossRefGoogle Scholar
  14. Han, J., Zhang, D., Hu, X., Guo, L., Ren, J., & Wu, F. (2015b). Background prior-based salient object detection via deep reconstruction residual. IEEE Transactions on Circuits and Systems for Video Technology, 25(8), 1309–1321.CrossRefGoogle Scholar
  15. Huang, H., Guo, W., & Zhang, Y. (2008). Detection of copy-move forgery in digital images using SIFT algorithm. In Pacific-Asia Workshop on Computational Intelligence and Industrial Application, 2008. PACIIA’08 (Vol. 2, pp. 272–276). IEEE.Google Scholar
  16. Huynh, T. K., Huynh, K. V., Le-Tien, T., & Nguyen, S. C. (2015). A survey on image forgery detection techniques. In 2015 IEEE RIVF International conference on computing and communication technologies—research, innovation, and vision for the future (RIVF).Google Scholar
  17. Jiang, J., Kohler, J., Macwilliams, C., Zaletelj, J., Guntner, G., Horstmann, H., et al. (2011). LIVE: An integrated production and feedback system for intelligent and interactive TV broadcasting. IEEE Transactions on Broadcasting, 57(3), 646–661.CrossRefGoogle Scholar
  18. Jing, L., & Shao, C. (2012). Image copy-move forgery detecting based on local invariant feature. Journal of Multimedia, 7(1), 90–97.MathSciNetCrossRefGoogle Scholar
  19. Kang, X. B., & Wei, S. M. (2008).Identifying tampered regions using singular value decomposition in digital image forensics. In 2008 International conference on computer science and software engineering (pp. 926–930).Google Scholar
  20. Khotanzad, A., & Hong, Y. H. (1990). Invariant image recognition by Zernike moments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(5), 489–497.CrossRefGoogle Scholar
  21. Kumar, S., Desai, J., & Mukherjee, S. (2015). A fast keypoint based hybrid method for copy move forgery detection. International Journal of Computing and Digital Systems, 4(2), 91–99.Google Scholar
  22. Li, Y. (2013). Image copy-move forgery detection based on polar cosine transform and approximate nearest neighbor searching. Forensic Science International, 224(1), 59–67.CrossRefGoogle Scholar
  23. Li, J., Li, X., Yang, B., & Sun, X. (2015). Segmentation-based image copy-move forgery detection scheme. IEEE Transactions on Information Forensics and Security, 10(3), 507–518.CrossRefGoogle Scholar
  24. Li, L., Li, S., Zhu, H., Chu, S. C., Roddick, J. F., & Pan, J. S. (2013). An efficient scheme for detecting copy-move forged images by local binary patterns. Journal of Information Hiding and Multimedia Signal Processing, 4, 46–56.Google Scholar
  25. Lin, H.-J., Wang, C.-W., & Kao, Y.-T. (2009). Fast copy-move forgery detection. WSEAS Transactions on Signal Processing, 5(5), 188–197.Google Scholar
  26. Lowe, D. G. (1999). Object recognition from local scale-invariant features. In The proceedings of the seventh IEEE international conference on computer vision (Vol. 2, pp. 1150-1-157). Ieee.Google Scholar
  27. Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.Google Scholar
  28. Luo, W., Huang, J., & Qiu, G. (2006). Robust detection of region-duplication forgery in digital image. In 18th International conference on pattern recognition, 2006. ICPR 2006 (Vol. 4, pp. 746–749). IEEE.Google Scholar
  29. Mahdian, B., & Saic, S. (2007). Detection of copy-move forgery using a method based on blur moment invariants. Forensic Science International, 171(2), 180–189.CrossRefGoogle Scholar
  30. Muhammad, N., Hussain, M., Muhammad, G., & Bebis, G. (2011). Copy-move forgery detection using dyadic wavelet transform. In Proceedings of the 2011 eighth international conference computer graphics, imaging and visualization (pp. 103–108).Google Scholar
  31. Ng, T., Chang, S., Hsu, J., & Pepeljugoski, M. (2004). Columbia photographic images and photorealistic computer graphics dataset. ADVENT, Columbia University.Google Scholar
  32. Popescu, A. C., & Farid, H. (2004). Exposing digital forgeries by detecting duplicated image regions. Computer Science Dartmouth College Private Ivy League Research University, 646.Google Scholar
  33. Pun, C. M., Yuan, X. C., & Bi, X. L. (2015). Image forgery detection using adaptive over-segmentation and feature points matching. IEEE Transactions on Information Forensics and Security, 10, 1–1.CrossRefGoogle Scholar
  34. Ren, J., Jiang, J., & Vlachos, T. (2010). High-accuracy sub-pixel motion estimation from noisy images in Fourier domain. IEEE Transactions on Image Processing, 19(5), 1379–1384.MathSciNetCrossRefGoogle Scholar
  35. Ren, J., Zabalza, J., Marshall, S., & Zheng, J. (2014). Effective feature extraction and data reduction in remote sensing using hyperspectral imaging [Applications Corner]. IEEE Signal Processing Magazine, 31(31), 149–154.CrossRefGoogle Scholar
  36. Ryu, S. J., Lee, M. J., & Lee, H. K. (2010). Detection of copy-rotate-move forgery using Zernike moments. In R. Bohme, P. W. L. Fong & R. Safavi-Naini (Eds.), Information hiding (pp. 51–65). Berlin: Springer.Google Scholar
  37. Ryu, S.-J., Kirchner, M., Lee, M.-J., & Lee, H.-K. (2013). Rotation invariant localization of duplicated image regions based on Zernike moments. IEEE Transactions on Information Forensics and Security, 8(8), 1355–1370.CrossRefGoogle Scholar
  38. Sencar, H. T., & Memon, N. (2008). Overview of state-of-the-art in digital image forensics. Algorithms, Architectures and Information Systems Security, 3, 325–348.Google Scholar
  39. Shensa, M. (1992). Discrete wavelet transform: Wedding the a trous and Mallat algorithms. IEEE Transactions on Signal Processing, 40(10), 2464–2482.CrossRefMATHGoogle Scholar
  40. Teh, C.-H., & Chin, R. T. (1988). On image analysis by the methods of moments. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(4), 496–513.CrossRefMATHGoogle Scholar
  41. Tralic, D., Zupancic, I., Grgic, S., & Grgic, M. (2013). CoMoFoD—new database for copy-move forgery detection. In ELMAR, 2013 55th international symposium (pp. 49–54). IEEE.Google Scholar
  42. Vedaldi, A., & Fulkerson, B. (2010). VLFeat: An open and portable library of computer vision algorithms. In Proceedings of the 18th ACM international conference on multimedia (pp. 1469–1472). ACM.Google Scholar
  43. Wang, J., Liu, G., Zhang, Z., Dai, Y., & Wang, Z. (2009). Fast and robust forensics for image region-duplication forgery. Acta Automatica Sinica, 35(12), 1488–1495.CrossRefGoogle Scholar
  44. Zabalza, J., Ren, J., Wang, Z., Marshall, S., & Wang, J. (2014). Singular spectrum analysis for effective feature extraction in hyperspectral imaging. IEEE Geoscience and Remote Sensing Letters, 11(11), 1886–1890.CrossRefGoogle Scholar
  45. Zahra, M. (2012). Image duplication forgery detection using two robust features. Research Journal of Recent Sciences, 1(12), 1–6.Google Scholar
  46. Zhao, C., Li, X., Ren, J., & Marshall, S. (2013). Improved sparse representation using adaptive spatial support for effective target detection in hyperspectral imagery. International Journal of Remote Sensing, 34(24), 8669–8684.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jiangbin Zheng
    • 1
  • Yanan Liu
    • 1
  • Jinchang Ren
    • 2
  • Tingge Zhu
    • 1
  • Yijun Yan
    • 2
  • Heng Yang
    • 3
  1. 1.Department of Computer Science and Engineering, School of ComputersNorthwestern Polytechnical UniversityXi’anChina
  2. 2.Department of Electronic and Electrical EngineeringUniversity of StrathclydeGlasgowUK
  3. 3.Xi’an Communications InstituteXi’anChina

Personalised recommendations