Multidimensional Systems and Signal Processing

, Volume 28, Issue 3, pp 1071–1089 | Cite as

Robust discriminative extreme learning machine for relevance feedback in image retrieval

  • Shenglan Liu
  • Lin FengEmail author
  • Yang Liu
  • Jun Wu
  • MuXin Sun
  • Wei Wang


Relevance feedback (RF) has long been an important approach for multi-media retrieval because of the semantic gap in image content, where SVM based methods are widely applied to RF of content-based image retrieval. However, RF based on SVM still has some limitations: (1) the high dimension of image features always make the RF time-consuming; (2) the model of SVM is not discriminative, because labels of image features are not sufficiently exploited. To solve above problems, we proposed robust discriminative extreme learning machine (RDELM) in this paper. RDELM involved both robust within-class and between-class scatter matrices to enhance the discrimination capacity of ELM for RF. Furthermore, an angle criterion dimensionality reduction method is utilized to extract the discriminative information for RDELM. Experimental results on four benchmark datasets (Corel-1K, Corel-5K, Corel-10K and MSRC) illustrate that our proposed RF method in this paper achieves better performance than several state-of-the-art methods.


Relevance feedback Image retrieval Extreme learning machine Robust discriminative information  


  1. Akusok, A., Miche, Y., Karhunen, J., et al. (2015). Arbitrary category classification of websites based on image content. IEEE on Computational Intelligence Magazine, 10(2), 30–41.CrossRefGoogle Scholar
  2. Anitha, S., & Rinesh, S. (2013). Semi-supervised biased maximum margin analysis for interactive image retrieval. Research Journal of Computer Systems Engineering, 4, 532–536.Google Scholar
  3. Cao, J., Huang, W., Zhao, T., Wang, J., & Wang, R. (2015a). An enhance excavation equipments classification algorithm based on acoustic spectrum dynamic feature. Multidimensional Systems and Signal Processing. doi: 10.1007/s11045-015-0374-z.
  4. Cao, J., & Lin, Z. (2015). Extreme learning machine on high dimensional and large data applications: A survey. Mathematical Problems in Engineering. doi: 10.1155/2015/103796.
  5. Cao, J., Lin, Z., Huang, G.-B., & Liu, N. (2012). Voting based extreme learning machine. Information Sciences, 185(1), 66–77.MathSciNetCrossRefGoogle Scholar
  6. Cao, J., Zhao, Y., Lai, X., Ong, M., Yin, C., Koh, Z., et al. (2015b). Landmark recognition with sparse representation classification and extreme learning machine. Journal of The Franklin Institute, 352(10), 4528–4545.MathSciNetCrossRefGoogle Scholar
  7. Deng, W., Zheng, Q., & Chen, L. (2009). Regularized extreme learning machine. In Computational intelligence and data mining, CIDM’09 (pp. 389–395).Google Scholar
  8. Feng, L., Liu, S., Xiao, Y., et al. (2015). A novel CBIR system with WLLTSA and ULRGA. Neurocomputing, 147, 509–522.CrossRefGoogle Scholar
  9. He, X. (2004). Incremental semi-supervised subspace learning for image retrieval. In Proceedings of the 12th annual ACM international conference on multimedia (pp. 2–8).Google Scholar
  10. He, X., & Niyogi, P. (2003). Locality preserving projections. In Advances in neural information processing systems 16. Vancouver, Canada.Google Scholar
  11. He, Q., Jin, X., Du, C., et al. (2014). Clustering in extreme learning machine feature space. Neurocomputing, 128, 88–95.CrossRefGoogle Scholar
  12. Hoi, S. C. H., Jin, R., Zhu, J., et al. (2008) Semi-supervised SVM batch mode active learning for image retrieval. In IEEE Conference on Computer Vision and Pattern Recognition (pp. 1–7).Google Scholar
  13. Hoi, S. C. H., & Lyu, M. R. (2005). A semi-supervised active learning framework for image retrieval. Computer Vision and Pattern Recognition, 2, 302–309.Google Scholar
  14. Horata, P., Chiewchanwattana, S., & Sunat, K. (2013). Robust extreme learning machine. Neurocomputing, 102, 31–44.CrossRefGoogle Scholar
  15. Huang, G.-B. (2015). What are extreme learning machines? Filling the gap between Frank Rosenblatt’s Dream and John von Neumann’s Puzzle. Cognitive Computation, 7, 263–278.CrossRefGoogle Scholar
  16. Huang, G., & Chen, L. (2007). Convex incremental extreme learning machine. Neurocomputing, 70(16–18), 3056–3062.CrossRefGoogle Scholar
  17. Huang, G., Chen, L., & Siew, C.-K. (2006). Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Transactions on Neural Networks, 17(4), 879–892.CrossRefGoogle Scholar
  18. Huang, G. B., Zhou, H., Ding, X., et al. (2012). Extreme learning machine for regression and multiclass classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 42(2), 513–529.CrossRefGoogle Scholar
  19. Iosifidis, A., Tefas, A., & Pitas, I. (2013). Minimum class variance extreme learning machine for human action recognition. IEEE Transactions on Circuits and Systems for Video Technology, 23(11), 1968–1979.CrossRefGoogle Scholar
  20. Iosifidis, A., Tefas, A., & Pitas, I. (2014). Regularized extreme learning machine for multi-view semi-supervised action recognition. Neurocomputing, 145, 250–262.CrossRefGoogle Scholar
  21. Jin, Y., Cao, J., Wang, Y., et al. (2015). Ensemble based extreme learning machine for cross-modality face matching. Multimedia Tools and Applications, 1–16.Google Scholar
  22. Kundu, M. K., Chowdhury, M., & Bulò, S. R. (2015). A graph-based relevance feedback mechanism in content-based image retrieval. Knowledge-Based Systems, 73, 254–264.CrossRefGoogle Scholar
  23. Liu, S., Feng, L., & Qiao, H. (2015). Scatter Balance: An angle-based supervised dimensionality reduction. IEEE Transactions on Neural Networks and Learning Systems, 26(2), 277–289.MathSciNetCrossRefGoogle Scholar
  24. Liu, S., Feng, L., Xiao, Y., et al. (2014). Robust activation function and its application: Semi-supervised kernel extreme learning method. Neurocomputing, 144, 318–328.CrossRefGoogle Scholar
  25. Liu, G. H., Li, Z. Y., Zhang, L., et al. (2011). Image retrieval based on micro-structure descriptor. Pattern Recognition, 44(9), 2123–2133.CrossRefGoogle Scholar
  26. Lu, K., Zhao, J., & Cai, D. (2006). An algorithm for semi-supervised learning in image retrieval. Pattern Recogition, 39(4), 717–720.CrossRefzbMATHGoogle Scholar
  27. Minhas, R., Baradarani, A., Seifzadeh, S., et al. (2010). Human action recognition using extreme learning machine based on visual vocabularies. Neurocomputing, 73(10), 1906–1917.CrossRefGoogle Scholar
  28. Mohammed, A. A., Minhas, R., Wu, Q. M. J., et al. (2011). Human face recognition based on multidimensional PCA and extreme learning machine. Pattern Recognition, 44(10), 2588–2597.CrossRefzbMATHGoogle Scholar
  29. Murala, S., & Wu, Q. M. (2014). Local mesh patterns versus local binary patterns: Biomedical image indexing and retrieval. IEEE Journal of Biomedical and Health Informatics, 18(3), 929–938.CrossRefGoogle Scholar
  30. Ojala, T., Pietikainen, M., & Maenpaa, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24(7), 971–987.CrossRefzbMATHGoogle Scholar
  31. Swain, M. J., & Ballard, D. H. (1991). Color indexing. International Journal of Computer Vision, 7(1), 11–32.CrossRefGoogle Scholar
  32. Tan, X., & Triggs, B. (2007). Enhanced local texture feature sets for face recognition under difficult lighting conditions. In Analysis and modeling of faces and gestures (pp. 168–182). Berlin: Springer.Google Scholar
  33. Tang, X., & Han, M. (2009). Partial Lanczos extreme learning machine for single-output regression problems. Neurocomputing, 72(13–15), 3066–3076.CrossRefGoogle Scholar
  34. Tang, X., & Han, M. (2009). Partial Lanczos extreme learning machine for single-output regression problems. Neurocomputing, 72(13–15), 3066–3076.CrossRefGoogle Scholar
  35. Zhang, P., & Yang, Z. (2015). A robust AdaBoost.RT based ensemble extreme learning machine. Mathematical Problems in Engineering, 2015, 260970.
  36. Zhang, K., & Luo, M. (2015). Outlier-robust extreme learning machine for regression problems. Neurocomputing, 151, 1519–1527.CrossRefGoogle Scholar
  37. Zhang, S., Yang, M., Cour, T., et al. (2015). Query specific rank fusion for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(4), 803–815.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Shenglan Liu
    • 1
    • 2
  • Lin Feng
    • 1
    • 2
    Email author
  • Yang Liu
    • 1
    • 2
  • Jun Wu
    • 1
    • 2
  • MuXin Sun
    • 1
    • 2
  • Wei Wang
    • 1
    • 2
  1. 1.Faculty of Electronic Information and Electrical EngineeringDalian University of TechnologyDalianChina
  2. 2.School of Innovation ExperimentDalian University of TechnologyDalianChina

Personalised recommendations