Advertisement

Multidimensional Systems and Signal Processing

, Volume 27, Issue 1, pp 87–104 | Cite as

An orthogonal 16-point approximate DCT for image and video compression

  • Thiago L. T. da Silveira
  • Fábio M. Bayer
  • Renato J. Cintra
  • Sunera Kulasekera
  • Arjuna Madanayake
  • Alice J. Kozakevicius
Article

Abstract

A low-complexity orthogonal multiplierless approximation for the 16-point discrete cosine transform (DCT) was introduced. The proposed method was designed to possess a very low computational cost. A fast algorithm based on matrix factorization was proposed requiring only 60 additions. The proposed architecture outperforms classical and state-of-the-art algorithms when assessed as a tool for image and video compression. Digital VLSI hardware implementations were also proposed being physically realized in field programmable gate array technology and implemented in 45 nm up to synthesis and place-route levels. Additionally, the proposed method was embedded into a high efficiency video coding (HEVC) reference software for actual proof-of-concept. Obtained results show negligible video degradation when compared to Chen DCT algorithm in HEVC.

Keywords

16-Point DCT approximation Low-complexity transforms  Image compression Video coding 

Notes

Acknowledgments

This work was partially supported by CPNq, FACEPE, FAPERGS and FIT/UFSM (Brazil), and by the College of Engineering at the University of Akron, Akron, OH, USA.

References

  1. Arai, Y., Agui, T., & Nakajima, M. (1988). A fast DCT-SQ scheme for images. Transactions of the IEICE, E–71(11), 1095–1097.Google Scholar
  2. Bayer, F. M., & Cintra, R. J. (2012). DCT-like transform for image compression requires 14 additions only. Electronics Letters, 48(15), 919–921. doi: 10.1049/el.2012.1148.CrossRefGoogle Scholar
  3. Bayer, F. M., Cintra, R. J., Edirisuriya, A., & Madanayake, A. (2012). A digital hardware fast algorithm and FPGA-based prototype for a novel 16-point approximate DCT for image compression applications. Measurement Science and Technology, 23(8), 114010–114019.CrossRefGoogle Scholar
  4. Blahut, R. E. (2010). Fast algorithms for signal processing. Cambridge: Cambridge University Press.CrossRefzbMATHGoogle Scholar
  5. Bouguezel, S., Ahmad, M. O., & Swamy, M. N. S. (2008). Low-complexity 8\(\times \)8 transform for image compression. Electronics Letters, 44(21), 1249–1250. doi:  10.1049/el:20082239.CrossRefGoogle Scholar
  6. Bouguezel, S., Ahmad, M. O., Swamy, M. (2009). A fast 8\(\times \)8 transform for image compression. In: 2009 International conference on microelectronics (ICM), pp. 74–77. doi: 10.1109/ICM.2009.5418584.
  7. Bouguezel, S., Ahmad, M. O., Swamy, M. N. S. (2010). A novel transform for image compression. In: 53rd IEEE international midwest symposium on circuits and systems (MWSCAS), pp. 509–512. doi: 10.1109/MWSCAS.2010.5548745.
  8. Bouguezel, S., Ahmad, M. O., Swamy, M. N. S. (2011). A low-complexity parametric transform for image compression. In: Proceedings of the 2011 IEEE international symposium on circuits and systems.Google Scholar
  9. Bouguezel, S., Ahmad, M. O., & Swamy, M. N. S. (2013). Binary discrete cosine and Hartley transforms. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(4), 989–1002. doi: 10.1109/TCSI.2012.2224751.MathSciNetCrossRefGoogle Scholar
  10. Britanak, V., Yip, P., & Rao, K. R. (2007). Discrete cosine and sine transforms. New York: Academic Press.Google Scholar
  11. Capelo, M. (2011). Advances on transforms for high efficiency video coding. Master’s thesis, Instituto Superior Técnico, Lisboa.Google Scholar
  12. Cham, W. K. (1989). Development of integer cosine transforms by the principle of dyadic symmetry. IEE Proceedings I Communications, Speech and Vision, 136, 276–282.CrossRefGoogle Scholar
  13. Cham, W. K., & Chan, Y. T. (1991). An order-16 integer cosine transform. IEEE Transactions on Signal Processing, 39(5), 1205–1208. doi: 10.1109/78.80974.CrossRefGoogle Scholar
  14. Chang, T. S., Kung, C. S., & Jen, C. W. (2000). A simple processor core design for DCT/IDCT. IEEE Transactions on Circuits and Systems for Video Technology, 10(3), 439–447. doi: 10.1109/76.836290.CrossRefGoogle Scholar
  15. Chen, W. H., Smith, C., & Fralick, S. (1977). A fast computational algorithm for the discrete cosine transform. IEEE Transactions on Communications, 25(9), 1004–1009. doi: 10.1109/TCOM.1977.1093941.CrossRefzbMATHGoogle Scholar
  16. Cintra, R. J. (2011). An integer approximation method for discrete sinusoidal transforms. Circuits, Systems, and Signal Processing, 30(6), 1481–1501. doi: 10.1007/s00034-011-9318-5.MathSciNetCrossRefzbMATHGoogle Scholar
  17. Cintra, R. J., & Bayer, F. M. (2011). A DCT approximation for image compression. IEEE Signal Processing Letters, 18(10), 579–582. doi: 10.1109/LSP.2011.2163394.CrossRefGoogle Scholar
  18. Cintra, R. J., Bayer, F. M., & Tablada, C. J. (2014). Low-complexity 8-point DCT approximations based on integer functions. Signal Processing, 99, 201–214. doi: 10.1016/j.sigpro.2013.12.027.CrossRefGoogle Scholar
  19. Dong, J., Ngan, K. N., Fong, C. K., & Cham, W. K. (2009). 2-D order-16 integer transforms for HD video coding. IEEE Transactions on Circuits and Systems for Video Technology, 19(10), 1462–1474. doi: 10.1109/TCSVT.2009.2026792.CrossRefGoogle Scholar
  20. Edirisuriya, A., Madanayake, A., Dimitrov, V., Cintra, R. J., & Adikari, J. (2012). VLSI architecture for 8-point AI-based Arai DCT having low area-time complexity and power at improved accuracy. Journal of Low Power Electronics and Applications, 2(2), 127–142. doi: 10.3390/jlpea2020127.CrossRefGoogle Scholar
  21. Feig, E., & Winograd, S. (1992). Fast algorithms for the discrete cosine transform. IEEE Transactions on Signal Processing, 40(9), 2174–2193.CrossRefzbMATHGoogle Scholar
  22. Fong, C. K., & Cham, W. K. (2012). LLM integer cosine transform and its fast algorithm. IEEE Transactions on Circuits and Systems for Video Technology, 22(6), 844–854.CrossRefGoogle Scholar
  23. Haweel, T. I. (2001). A new square wave transform based on the DCT. Signal Processing, 82, 2309–2319.CrossRefGoogle Scholar
  24. Heideman, M. T., & Burrus, C. S. (1988). Multiplicative complexity, convolution, and the DFT. Signal processing and digital filtering. Berlin: Springer.CrossRefGoogle Scholar
  25. Herstein, I. N. (1975). Topics in algebra (2nd ed.). London: Wiley.zbMATHGoogle Scholar
  26. Hou, H. S. (1987). A fast recursive algorithm for computing the discrete cosine transform. IEEE Transactions on Acoustic, Signal, and Speech Processing, 6(10), 1455–1461.Google Scholar
  27. International Organisation for Standardisation. (1994). Generic coding of moving pictures and associated audio information—Part 2: Video. ISO/IEC JTC1/SC29/WG11—Coding of moving pictures and audio, ISO.Google Scholar
  28. International Telecommunication Union. (1990). ITU-T recommendation H.261 version 1: Video codec for audiovisual services at \(p \times 64\) kbits. Tech. rep., ITU-T.Google Scholar
  29. International Telecommunication Union. (1995). ITU-T recommendation H.263 version 1: Video coding for low bit rate communication. Tech. rep., ITU-T.Google Scholar
  30. International Telecommunication Union. (2013). Infrastructure of audiovisual services: Coding of moving video—High efficiency video coding. Telecommunication Standarization Sector of ITU.Google Scholar
  31. Joint Collaborative Team on Video Coding (JCT-VC). (2013). HEVC references software documentation. Fraunhofer Heinrich Hertz Institute. https://hevc.hhi.fraunhofer.de/.
  32. Joint Video Team. (2003). Recommendation H.264 and ISO/IEC 14 496-10 AVC: Draft ITU-T recommendation and final draft international standard of joint video specification. Tech. rep., ITU-T.Google Scholar
  33. Lee, B. G. (1984). A new algorithm for computing the discrete cosine transform. IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP–32, 1243–1245.Google Scholar
  34. Lengwehasatit, K., & Ortega, A. (2004). Scalable variable complexity approximate forward DCT. IEEE Transactions on Circuits and Systems for Video Technology, 14(11), 1236–1248. doi: 10.1109/TCSVT.2004.835151.CrossRefGoogle Scholar
  35. Liang, J., & Tran, T. D. (2001). Fast multiplierless approximation of the DCT with the lifting scheme. IEEE Transactions on Signal Processing, 49, 3032–3044.CrossRefGoogle Scholar
  36. Lin, M. C., Dung, L. R., & Weng, P. K. (2006). An ultra-low-power image compressor for capsule endoscope. BioMedical Engineering Online, 5(1), 1–8. doi: 10.1186/1475-925X-5-14.CrossRefGoogle Scholar
  37. Loeffler, C., Ligtenberg, A., Moschytz, G. (1989), Practical fast 1D DCT algorithms with 11 multiplications. In: Proceedings of the international conference on acoustics, speech, and signal processing, pp. 988–991.Google Scholar
  38. Malvar, H. S. (1992). Signal processing with lapped transforms. London: Artech House.zbMATHGoogle Scholar
  39. Oppenheim, A. V. (2006). Discrete-time signal processing. Upper Saddle River: Pearson Education.Google Scholar
  40. Ortega, A., & Ramchandran, K. (1998). Rate-distortion methods for image and video compression. IEEE Signal Processing Magazine, 15(6), 23–50. doi: 10.1109/79.733495.CrossRefGoogle Scholar
  41. Pao, I. M., & Sun, M. T. (1998). Approximation of calculations for forward discrete cosine transform. IEEE Transactions on Circuits and Systems for Video Technology, 8(3), 264–268. doi: 10.1109/76.678620.CrossRefGoogle Scholar
  42. Pennebaker, W. B., & Mitchell, J. L. (1992). JPEG still image data compression standard. New York, NY: Van Nostrand Reinhold.Google Scholar
  43. Potluri, U. S., Madanayake, A., Cintra, R. J., Bayer, F. M., & Rajapaksha, N. (2012). Multiplier-free DCT approximations for RF multi-beam digital aperture-array space imaging and directional sensing. Measurement Science and Technology, 23(11), 114003. doi: 10.1088/0957-0233/23/11/114003.CrossRefGoogle Scholar
  44. Potluri, U. S., Madanayake, A., Cintra, R. J., Bayer, F. M., Kulasekera, S., & Edirisuriya, A. (2014). Improved 8-point approximate DCT for image and video compression requiring only 14 additions. IEEE Transactions on Circuits and Systems I, 61(6), 1727–1740. doi: 10.1109/TCSI.2013.2295022.CrossRefGoogle Scholar
  45. Pourazad, M. T., Doutre, C., Azimi, M., & Nasiopoulos, P. (2012). HEVC: The new gold standard for video compression: How does HEVC compare with H.264/AVC? IEEE Consumer Electronics Magazine, 1(3), 36–46. doi: 10.1109/MCE.2012.2192754.CrossRefGoogle Scholar
  46. Proakis, J. G., & Manolakis, D. K. (2006). Digital signal processing (4th ed.). Englewood Cliffs: Prentice Hall.Google Scholar
  47. Rao, K. R., & Yip, P. (1990). Discrete cosine transform: Algorithms, advantages, applications. San Diego, CA: Academic Press.CrossRefzbMATHGoogle Scholar
  48. Roma, N., & Sousa, L. (2007). Efficient hybrid DCT-domain algorithm for video spatial downscaling. EURASIP Journal on Advances in Signal Processing, 2007(2), 30. doi: 10.1155/2007/57291.Google Scholar
  49. Seber, G. A. F. (2007). A matrix handbook for statisticians. New York: Wiley-Interscience.CrossRefGoogle Scholar
  50. Smith, S. W. (1997). The scientist and engineer’s guide to digital signal processing. San Diego, CA: California Technical Publishing.Google Scholar
  51. Tran, T. D. (2000). The binDCT: Fast multiplierless approximation of the DCT. IEEE Signal Processing Letters, 6(7), 141–144.CrossRefGoogle Scholar
  52. USC-SIPI. (2011). The USC-SIPI image database. University of Southern California, Signal and Image Processing Institute. http://sipi.usc.edu/database/.
  53. Valova, I., & Kosugi, Y. (2000). Hadamard-based image decomposition and compression. IEEE Transactions on Information Technology in Biomedicine, 4(4), 306–319.CrossRefGoogle Scholar
  54. Vetterli, M., & Nussbaumer, H. (1984). Simple FFT and DCT algorithms with reduced number of operations. Signal Processing, 6, 267–278.MathSciNetCrossRefzbMATHGoogle Scholar
  55. Wang, Z. (1984). Fast algorithms for the discrete W transform and for the discrete Fourier transform. IEEE Transactions on Acoustics, Speech and Signal Processing, ASSP–32, 803–816.CrossRefGoogle Scholar
  56. Wang, Z., & Bovik, A. (2002). A universal image quality index. IEEE Signal Processing Letters, 9(3), 81–84.CrossRefGoogle Scholar
  57. Wang, Z., Bovik, A. C., Sheikh, H. R., & Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions Image Processing, 13(4), 600–612. doi: 10.1109/TIP.2003.819861.CrossRefGoogle Scholar
  58. Watkins, D. S. (2004). Fundamentals of matrix computations. Pure and applied mathematics: A Wiley series of texts, monographs and tracts. London: Wiley.Google Scholar
  59. Wien, M., Sun, S. (2001). ICT comparison for adaptive block transforms. Tech. rep.Google Scholar
  60. Yarlagadda, R. K., Hershey, J. E. (1997). Hadamard matrix analysis and synthesis with applications to communications and signal/image processing. Kluwer Academic Publishers.Google Scholar
  61. Yip, P., Rao, K. R. (1988). The decimation-in-frequency algorithms for a family of discrete sine and cosine transforms. Circuits, Systems, and Signal Processing, 7(1), 3–19. doi: 10.1007/BF01600005.

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Thiago L. T. da Silveira
    • 1
  • Fábio M. Bayer
    • 2
  • Renato J. Cintra
    • 3
  • Sunera Kulasekera
    • 4
  • Arjuna Madanayake
    • 4
  • Alice J. Kozakevicius
    • 5
  1. 1.Programa de Pós-Graduação em InformáticaUniversidade Federal de Santa MariaSanta MariaBrazil
  2. 2.Departamento de Estatística and LACESMUniversidade Federal de Santa MariaSanta MariaBrazil
  3. 3.Signal Processing Group, Departamento de EstatísticaUniversidade Federal de PernambucoRecifeBrazil
  4. 4.Department of Electrical and Computer EngineeringUniversity of AkronAkronUSA
  5. 5.Departamento de MatemáticaUniversidade Federal de Santa MariaSanta MariaBrazil

Personalised recommendations