The synthesis of sound figures

  • Karim Helwani
  • Sascha Spors
  • Herbert Buchner


In this paper we discuss a novel technique to control the spatial distribution of sound level within a synthesized sound field. The problem is formulated by separating the sound field into regions with high acoustic level, so-called bright regions, and zones with low acoustic level (zones of quiet) by time independent virtual boundaries. This way, the propagating sound field obtains a static spatial shape, which we call sound figure. This problem is treated with a generic approach for creating sound figures. We give an analytic solution to the problem and highlight, how our findings can be applied using established sound field synthesis techniques. We furthermore show the limitations of our approach, provide simulation results to prove the concept and discuss some application areas.


Multichannel sound reproduction Sound field synthesis  Quiet zones  Sound figures 



We thank the reviewers for their thorough reading of the manuscript and highly appreciate the comments and suggestions.


  1. Abhayapala, T., & Wu, Y. (2009). Spatial soundfield reproduction with zones of quiet. In 127th audio engineering society convention. New York, USA.Google Scholar
  2. Ahrens, J., & Spors, S. (2010). Sound field reproduction using planar and linear arrays of loudspeakers. IEEE Transactions on Audio, Speech, and Language Processing, 18(8), 2038–2050.CrossRefGoogle Scholar
  3. Arfken, G. (2005). Mathematical methods for physicists (6th ed.). Boston: Elsevier.zbMATHGoogle Scholar
  4. Berkhout, A. (1987). Applied seismic wave theory. Amsterdam: Elsevier Science.Google Scholar
  5. Berkhout, A., & Wapenaar, C. (1989). One-way versions of the Kirchhoff integral. Geophysics, 54(4), 460–467.CrossRefGoogle Scholar
  6. Berkhout, A., De Vries, D., & Vogel, P. (1993). Acoustic control by wave field synthesis. The Journal of the Acoustical Society of America (JASA), 93, 2764–2778.CrossRefGoogle Scholar
  7. Boothby, W. M. (1975). An introduction to differentiable manifolds and Riemannian geometry. New York: Academic Press.zbMATHGoogle Scholar
  8. Choi, J., & Kim, Y. (2002). Generation of an acoustically bright zone with an illuminated region using multiple sources. Journal of the Acoustical Society of America (JASA), 111, 1695–1700.CrossRefGoogle Scholar
  9. Chung, F. (1997). Spectral graph theory. In Conference board of the mathematical sciences. American Mathematical Society.Google Scholar
  10. Courant, D., & Hilbert, R. (1953). Methods of mathematical physics. New York: Interscience.Google Scholar
  11. Daniel, J. (2000). Représentation de champs acoustiques, application à la transmission et à la reproduction de scènes sonores complexes dans un contexte multimédia. Ph.D. thesis, Université Paris 6.Google Scholar
  12. Fazi, F. (2010). Sound field reproduction. Ph.D. thesis. University of Southampton, UK.
  13. Fazi, F., & Nelson, P. (2011). Sound field reproduction with an array of loudspeakers. Rivista Italiana di Acustica, 35(1), 1–11.Google Scholar
  14. Fazi, F., Nelson, P. A., & Potthast, R. (2009). Analogies and differences between three methods for sound field reproduction. In 1st ambisonic symposium. Graz, Austria.Google Scholar
  15. Giroire, J. (1982). Integral equation methods for the helmholtz equation. Integral Equations and Operator Theory, 5(1), 506–517.CrossRefzbMATHMathSciNetGoogle Scholar
  16. Golub, G., & Van Loan, C. (1996). Matrix computations (3rd ed.). Baltimore: Johns Hopkins University Press.zbMATHGoogle Scholar
  17. Gumerov, N. A., & Duraiswami, R. (2004). Fast multipole methods for the Helmholtz equation in three dimensions. Amsterdam: Elsevier.Google Scholar
  18. Helwani, K., Spors, S., & Buchner, H. (2011). Spatio-temporal signal preprocessing for multichannel acoustic echo cancellation. In Proceedings of the IEEE international conference on acoustics, speech, and, signal processing (ICASSP).Google Scholar
  19. Kleinberg, J., & Tardos, E. (2005). Algorithm design. Reading, MA: Addison-Wesley.Google Scholar
  20. Lanczos, C. (1997). Linear differential operators. New York: Courier Dover.Google Scholar
  21. Menzies, D. (2012). Sound field synthesis with distributed modal constraints. Acta Acustica united with Acustica, 98(1), 15–27.CrossRefGoogle Scholar
  22. Oppenheim, A. (1999). Discrete-time signal processing (2nd ed.). Upper Saddle River, NJ: Prentice-Hall.Google Scholar
  23. Poletti, M. A. (2000). A unified theory of horizontal holographic sound. Journal of the Audio Engineering Society, 48(12), 1155–1182.Google Scholar
  24. Poletti, M., & Abhayapala, T. (2011). Interior and exterior sound field control using general two-dimensional first-order sources. The Journal of the Acoustical Society of America (JASA), 129(1), 234–244.CrossRefGoogle Scholar
  25. Rabenstein, R., Steffen, P., & Spors, S. (2006). Representation of two-dimensional wave fields by multidimensional signals. Signal Processing, 86(6), 1341–1351.CrossRefzbMATHGoogle Scholar
  26. Rosenberg, S. (1997). The Laplacian on a Riemannian manifold: An introduction to analysis on manifolds. Cambridge, MA: Cambridge University Press.CrossRefzbMATHGoogle Scholar
  27. Rossing, T. D. (2007). Springer handbook of acoustics. Berlin: Springer.CrossRefGoogle Scholar
  28. Shin, M., Lee, S., Fazi, F., Nelson, P., Kim, D., Wang, S., et al. (2010). Maximization of acoustic energy difference between two spaces. The Journal of the Acoustical Society of America (JASA), 128, 121–131.CrossRefGoogle Scholar
  29. Spors, S. (2007). Extension of an analytic secondary source selection criterion for wave field synthesis. In 123th audio engineering society convention. New York, USA.Google Scholar
  30. Spors, S., Helwani, K., & Ahrens, J. (2011). Local sound field synthesis by virtual acoustic scattering and Time-Reversal. In 131st audio engineering society convention. New York, USA.Google Scholar
  31. Spors, S., Rabenstein, R., & Ahrens, J. (2008). The theory of wave field synthesis revisited. In 124th audio engineering society convention (Vol. 24). Amsterdam, NetherlandsGoogle Scholar
  32. Teutsch, H. (2007). Modal array signal processing: principles and applications of acoustic wavefield decomposition. Berlin: Springer.Google Scholar
  33. Tikhonov, A., & Samarskii, A. (1963). Equations of mathematical physics. New York: Dover.zbMATHGoogle Scholar
  34. Williams, E. (1999). Fourier acoustics: Sound radiation and nearfield acoustical holography. New York: Academic Press.Google Scholar
  35. Zotter, F., & Spors, S. (2013). Is sound field control determined at all frequencies? How is it related to numerical acoustics? In Audio engineering society conference: 52nd international conference (pp. 1–9). Guildford, UK.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Quality and Usability Lab, Telekom Innovation LaboratoriesTechnische Universität BerlinBerlinGermany
  2. 2.Institut für NachrichtentechnikUniversität RostockRostock, WarnemündeGermany
  3. 3.Machine Learning GroupTechnische Universität BerlinBerlinGermany

Personalised recommendations