Multidimensional Systems and Signal Processing

, Volume 25, Issue 1, pp 179–209 | Cite as

On the Newton bivariate polynomial interpolation with applications

  • Dimitris N. Varsamis
  • Nicholas P. Karampetakis


The main purpose of this work is to provide recursive algorithms for the computation of the Newton interpolation polynomial of a given two-variable function. The special case where the interpolation polynomial has known upper bounds on the degree of each indeterminate is studied and applied to the computation of the inverse of a two-variable polynomial matrix.


Bivariate polynomials Newton bivariate interpolation Inverse polynomial matrix 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antoniou E. G. (2001) Transfer function computation for generalized ndimensional systems. Journal of the Franklin Institute 338: 83–90CrossRefMATHMathSciNetGoogle Scholar
  2. Ben-Israel A., Greville T. N. (2003) Generalized inverses: Theory and applications (2nd ed.). Springer, New YorkGoogle Scholar
  3. de Boor C., Ron A. (1990) On multivariate polynomial interpolation. Constructive Approximation 6: 287–302CrossRefMATHMathSciNetGoogle Scholar
  4. Fausett L. V. (2002) Numerical methods: Algorithms and applications. Prentice Hall, Englewood CliffsGoogle Scholar
  5. Fragulis G., Mertzios B. G., Vardulakis A. I. G. (1991) Computation of the inverse of a polynomial matrix and evaluation of its laurent expansion. International Journal of Control 53(2): 431–443CrossRefMATHMathSciNetGoogle Scholar
  6. Gasca M., Martinez J. J. (1992) Bivariate hermite-birkhof interpolation and vandermonde determinants. Numerical Algorithms 2: 193–199CrossRefMathSciNetGoogle Scholar
  7. Gasca M., Sauer T. (2000a) On the history of multivariate polynomial interpolation, numerical analysis, 2000, vol. ii: Interpolation and extrapolation. Journal of Computational and Applied Mathematics 122(1-2): 23–35CrossRefMATHMathSciNetGoogle Scholar
  8. Gasca M., Sauer T. (2000b) Polynomial interpolation in several variables. Advances in Computational Mathematics 12: 377–410CrossRefMATHMathSciNetGoogle Scholar
  9. Hromcik, M., & Sebek, M. (2001). Fast fourier transform and linear polynomial matrix equations. In Proceedings of the 1rst IFAC workshop on systems structure and control, Prague, Czech Republic.Google Scholar
  10. Karampetakis N., Evripidou A. (2012) On the computation of the inverse of a two-variable polynomial matrix by interpolation. Multidimensional Systems and Signal Processing 23: 97–118CrossRefMATHMathSciNetGoogle Scholar
  11. Karampetakis N. P. (1997a) Computation of the generalized inverse of a polynomial matrix and applications. Linear Algebra and its Applications 252(13): 35–60CrossRefMATHMathSciNetGoogle Scholar
  12. Karampetakis N. P. (1997b) Generalized inverses of two-variable polynomial matrices and applications. Circuits, Systems, and Signal Processing 16(4): 439–453CrossRefMATHMathSciNetGoogle Scholar
  13. Karampetakis N. P., Vologiannidis S. (2003) Dft calculation of the generalized and drazin inverse of a polynomial matrix. Applied Mathematics and Computation 143: 501–521CrossRefMATHMathSciNetGoogle Scholar
  14. Karampetakis N. P., Mertzios B. G., Vardulakis A. I. G. (1994) Computation of the transfer function matrix and its laurent expansion of generalized two-dimensional systems. International Journal of Control 60(4): 521–541CrossRefMATHMathSciNetGoogle Scholar
  15. Lipson, J. D. (1976). The fast fourier transform, its role as an algebraic algorithm. In Proceedings of the ACM annual conference/annual meeting, pp. 436–441.Google Scholar
  16. Lobo, R. G., Bitzer, D. L., & Vouk, M. A. (2006). Locally invertible multivariate polynomial matrices, Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), Vol. 3969.Google Scholar
  17. Neidinger, R. D. (2009). Multivariable interpolating polynomials in newton forms. In Joint mathematics meetings 2009, Washington, DC, January 5–8.Google Scholar
  18. Olver P. J. (2006) On multivariate interpolation. Studies in Applied Mathematics 116: 201–240CrossRefMATHMathSciNetGoogle Scholar
  19. Paccagnella L. E., Pierobon G. L. (1976) Fft calculation of a determinantal polynomial. IEEE Transactions on Automatic Control 29(3): 401–402CrossRefGoogle Scholar
  20. Phillips G. M. (2003) Interpolation and approximation by polynomials. Springer, New YorkMATHGoogle Scholar
  21. Sauer T., Xu Y. (1995) On multivariate lagrange interpolation. Mathematics of Computation 64: 1147–1170CrossRefMATHMathSciNetGoogle Scholar
  22. Schuster A., Hippe P. (1992) Inversion of polynomial matrices by interpolation. IEEE Transactions on Automatic Control 37: 363–365CrossRefMathSciNetGoogle Scholar
  23. Varsamis, D. N., & Karampetakis, N. P. (2011). On the newton multivariate polynomial interpolation with applications. In 2011 7th international workshop on multidimensional (nD) systems (nDs), Poitiers, France. doi: 10.1109/nDS.2011.6076875.
  24. Vologiannidis S., Karampetakis N. P. (2004) Inverses of multivariable polynomial matrices by discrete fourier transforms. Multidimensional Systems and Signal Processing 15: 341–361CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Dimitris N. Varsamis
    • 1
  • Nicholas P. Karampetakis
    • 2
  1. 1.Department of Informatics and CommunicationsTechnological Educational Institute of SerresSerresGreece
  2. 2.Department of MathematicsAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations