Advertisement

Multidimensional Systems and Signal Processing

, Volume 25, Issue 1, pp 145–155 | Cite as

Local spectral analysis of images via the wavelet transform based on partial differential equations

  • Eugene B. Postnikov
  • Vineet K. Singh
Article

Abstract

We propose method for the local spectral analysis of images via the two-dimensional continuous wavelet transform with the Morlet wavelet based on its representation as a solution of the partial differential equation. It has been shown that a transformed function uniquely determines an initial value for the equation, i.e. a Cauchy problem is stated. Its solving implies that scale parameter a plays a role of “time variable” and two translation parameters b x , b y are spatial independent variables. Numerical examples are given to illustrate the efficiency of the proposed method.

Keywords

Wavelet transform 2D Morlet wavelet Local spectrum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11045_2012_196_MOESM1_ESM.pdf (4 mb)
ESM 1 (PDF 4066 kb)

References

  1. Antoine J. P., Murenzi R., Vandergheynst P., Ali S.T. (2004) Two-dimensional wavelets and their relatives. Cambridge University Press, CambridgeCrossRefzbMATHGoogle Scholar
  2. Antoine J. P., Carette P., Murenzi R., Piette B. (1993) Image analysis with two-dimensional continuous wavelet transform. Signal Processing 31: 241–272. doi: 10.1016/0165-1684(93)90085-O CrossRefzbMATHGoogle Scholar
  3. Biskri S., Antoine J. P., Inhester B., Mekideche F. (2010) Extraction of solar coronal magnetic loops with the directional 2D morlet wavelet transform. Solar Physics 262: 373–385. doi: 10.1007/s11207-010-9533-4 CrossRefGoogle Scholar
  4. Gonnet C., Torresani B. (1994) Local frequency analysis with two-dimensional wavelet transform. Signal Processing 37: 389–404. doi: 10.1016/0165-1684(94)90007-8 CrossRefzbMATHGoogle Scholar
  5. Haase M. (2000) A family of complex wavelets for characterization of singularities. In: Novak M (eds) Paradigms of complexity. Fractals and structures in the sciences. World Scientific, Singapore, pp 287–288Google Scholar
  6. Hundsdorfer W.H., Verwer J.G. (2003) Numerical solution of time-dependent advection– diffusion–reaction equations. Springer, BerlinCrossRefzbMATHGoogle Scholar
  7. Kirby J. F., Swain C. J. (2006) Mapping the mechanical anisotropy of the lithosphere using a 2D wavelet coherence, and its application to Australia. Physics of the Earth and Planetary Interiors 158: 122–138. doi: 10.1016/j.pepi.2006.03.02 CrossRefGoogle Scholar
  8. Ning W., Lu C. (2010) Two-dimensional continuous wavelet analysis and its application to meteorological data. Journal of Atmospheric Oceanic Technology 27: 652–666. doi: 10.1175/2009JTECHA1338.1 CrossRefGoogle Scholar
  9. Postnikov E. (2006) Evaluation of a continuous wavelet transform by solving the Cauchy problem for a system of partial differential equations. Computational Mathamatics and Mathamatics Physics 46: 73–78. doi: 1134/S0965542506010088 CrossRefMathSciNetGoogle Scholar
  10. Postnikov E. B., Loskutov A. Y. (2005) Analysis of small-scale wave structures in the Saturnian A ring based on data from the Cassini interplanetary spacecraft. Journal of Experimental and Theoretical Physics 101: 646–652. doi: 10.1134/1.2131932 CrossRefGoogle Scholar
  11. Postnikov E. B., Loskutov A. Y. (2007) Wavelet analysis of fine-scale structures in the Saturnian B and C rings using data from the Cassini spacecraft. Journal of Experimental and Theoretical Physics 104: 417–422. doi: 10.1134/S1063776107030065 CrossRefGoogle Scholar
  12. Ruppert-Felsot J., Farge M., Petitjeans P. (2009) Wavelet tools to study intermittency: Application to vortex bursting. Journal of Fluid Mechanics 636: 427–453. doi: 10.1017/S0022112009008003 CrossRefzbMATHMathSciNetGoogle Scholar
  13. Shyun H.-C., Sun Y.-S. (2002) Construction of a morlet wavelet power spectrum. Multidimensional System and Signal Processing 13: 101–111. doi: 10.1023/A:1013847512432 CrossRefGoogle Scholar
  14. Zhao, Y., & Swamy, M. N. S. (2011). The analysis and design of two-dimensional nearly- orthogonal symmetric wavelet filter banks. Multidimensional System and Signal Processing. doi: 10.1007/s11045-011-0165-0 .

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Theoretical PhysicsKursk State UniversityKurskRussia
  2. 2.Department of MathematicsBITS Pilani-K.K. Birla Goa CampusZuarinagarIndia

Personalised recommendations