Advertisement

Multidimensional Systems and Signal Processing

, Volume 23, Issue 3, pp 349–379 | Cite as

Fisher information matrix for branching processes with application to electron-multiplying charge-coupled devices

  • Jerry Chao
  • E. Sally Ward
  • Raimund J. Ober
Open Access
Article

Abstract

The high quantum efficiency of the charge-coupled device (CCD) has rendered it the imaging technology of choice in diverse applications. However, under extremely low light conditions where few photons are detected from the imaged object, the CCD becomes unsuitable as its readout noise can easily overwhelm the weak signal. An intended solution to this problem is the electron-multiplying charge-coupled device (EMCCD), which stochastically amplifies the acquired signal to drown out the readout noise. Here, we develop the theory for calculating the Fisher information content of the amplified signal, which is modeled as the output of a branching process. Specifically, Fisher information expressions are obtained for a general and a geometric model of amplification, as well as for two approximations of the amplified signal. All expressions pertain to the important scenario of a Poisson-distributed initial signal, which is characteristic of physical processes such as photon detection. To facilitate the investigation of different data models, a “noise coefficient” is introduced which allows the analysis and comparison of Fisher information via a scalar quantity. We apply our results to the problem of estimating the location of a point source from its image, as observed through an optical microscope and detected by an EMCCD.

Keywords

Branching process Electron Multiplication Fisher information Quantum-limited imaging Single molecule microscopy 

References

  1. Abramowitz, M., Stegun, I. A. (eds) (1965) Handbook of mathematical functions with formulas, graphs, and mathematical tables. Dover Publications, New YorkGoogle Scholar
  2. Andersson S. B. (2008) Localization of a fluorescent source without numerical fitting. Optics Express 16: 18714–18724CrossRefGoogle Scholar
  3. Athreya K. B., Ney P. E. (2004) Branching processes. Dover Publications, New YorkzbMATHGoogle Scholar
  4. Basden A. G., Haniff C. A., Mackay C. D. (2003) Photon counting strategies with low-light-level CCDs. Monthly Notices of the Royal Astronomical Society 345: 985–991CrossRefGoogle Scholar
  5. Born M., Wolf E. (1999) Principles of optics. Cambridge University Press, CambridgeGoogle Scholar
  6. DeSantis M. C., DeCenzo S. H., Li J., Wang Y. M. (2010) Precision analysis for standard deviation measurements of immobile single fluorescent molecule images. Optics Express 18: 6563–6576CrossRefGoogle Scholar
  7. Grimmett G. R., Stirzaker D. R. (2001) Probability and random processes. 3rd edn. Oxford University Press, New YorkGoogle Scholar
  8. Haccou P., Jagers P., Vatutin V. A. (2005) Branching processes: Variation, growth, and extinction of populations. Cambridge University Press, CambridgezbMATHCrossRefGoogle Scholar
  9. Harris T. E. (1963) The theory of branching processes. Springer, BerlinzbMATHGoogle Scholar
  10. Hollenhorst J. N. (1990) A theory of multiplication noise. IEEE Transactions on Electron Devices 37: 781–788CrossRefGoogle Scholar
  11. Hynecek J., Nishiwaki T. (2003) Excess noise and other important characteristics of low light level imaging using charge multiplying CCDs. IEEE Transactions on Electron Devices 50: 239–245CrossRefGoogle Scholar
  12. Kay S. M. (1993) Fundamentals of statistical signal processing: Estimation theory. Prentice Hall PTR, New JerseyzbMATHGoogle Scholar
  13. Kimmel M., Axelrod D. E. (2002) Branching processes in biology. Springer, New YorkzbMATHGoogle Scholar
  14. Matsuo K., Teich M. C., Saleh B. E. A. (1985) Noise properties and time response of the staircase avalanche photodiode. IEEE Transactions on Electron Devices ED-32: 2615–2623CrossRefGoogle Scholar
  15. Moerner W. E. (2007) New directions in single-molecule imaging and analysis. Proceedings of the National Academy of Sciences USA 104: 12596–12602CrossRefGoogle Scholar
  16. Mortensen K. I., Churchman L. S., Spudich J. A., Flyvbjerg H. (2010) Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nature Methods 7: 377–381CrossRefGoogle Scholar
  17. Ober R. J., Ram S., Ward E. S. (2004) Localization accuracy in single-molecule microscopy. Biophysical Journal 86: 1185–1200CrossRefGoogle Scholar
  18. Pavani S. R. P., Piestun R. (2008) Three dimensional tracking of fluorescent microparticles using a photon-limited double-helix response system. Optics Express 16: 22048–22057CrossRefGoogle Scholar
  19. Quan T., Zeng S., Huang Z. (2010) Localization capability and limitation of electron-multiplying charge-coupled, scientific complementary metal-oxide semiconductor, and charge-coupled devices for superresolution imaging. Journal of Biomedical Optics 15: 066005CrossRefGoogle Scholar
  20. Ram S., Ward E. S., Ober R. J. (2006) A stochastic analysis of performance limits for optical microscopes. Multidimensional Systems and Signal Processing 17: 27–57MathSciNetzbMATHCrossRefGoogle Scholar
  21. Ram S., Prabhat P., Chao J., Ward E. S., Ober R. J. (2008) High accuracy 3D quantum dot tracking with multifocal plane microscopy for the study of fast intracellular dynamics in live cells. Biophysical Journal 95: 6025–6043CrossRefGoogle Scholar
  22. Rao C. R. (1965) Linear statistical inference and its applications. Wiley, New YorkzbMATHGoogle Scholar
  23. Robbins M. S., Hadwen B. J. (2003) The noise performance of electron multiplying charge-coupled devices. IEEE Transactions on Electron Devices 50: 1227–1232CrossRefGoogle Scholar
  24. Snyder D. L., Helstrom C. W., Lanterman A. D., Faisal M., White R. L. (1995) Compensation for readout noise in CCD images. Journal of the Optical Society of America A 12: 272–283CrossRefGoogle Scholar
  25. Thompson M. A., Lew M. D., Badieirostami M., Moerner W. E. (2010) Localizing and tracking single nanoscale emitters in three dimensions with high spatiotemporal resolution using a double-helix point spread function. Nano Letters 10: 211–218CrossRefGoogle Scholar
  26. Thompson R. E., Larson D. R., Webb W. W. (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophysical Journal 82: 2775–2783CrossRefGoogle Scholar
  27. Tubbs, R. N. (2003). Lucky exposures: Diffraction limited astronomical imaging through the atmosphere. PhD thesis, University of Cambridge.Google Scholar
  28. Walter N. G., Huang C., Manzo A. J., Sobhy M. A. (2008) Do-it-yourself guide: How to use the modern single-molecule toolkit. Nature Methods 5: 475–489CrossRefGoogle Scholar
  29. Wu P., Nelson N., Tseng Y. (2010) A general method for improving spatial resolution by optimization of electron multiplication in CCD imaging. Optics Express 18: 5199–5212CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Jerry Chao
    • 1
    • 2
  • E. Sally Ward
    • 2
  • Raimund J. Ober
    • 1
    • 2
  1. 1.Department of Electrical EngineeringUniversity of Texas at DallasRichardsonUSA
  2. 2.Department of ImmunologyUniversity of Texas Southwestern Medical CenterDallasUSA

Personalised recommendations