Advertisement

Markovian properties for 2D behavioral systems described by PDE’s: the scalar case

  • Paula RochaEmail author
  • Jan C. Willems
Article

Abstract

In this paper we study the characterization of deterministic Markovian properties for 2D behavioral systems in terms of their descriptions by PDE’s. In particular, we consider scalar systems and show that in this case strong-Markovianity is equivalent to the existence of a first order PDE description.

Keywords

2D systems Behavioral approach Markovian properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bose, N. K. (1982). Applied multidimensional systems theory. Van Nostrand Reinhold.Google Scholar
  2. Bose, N. K. (Ed.) (1985). Applied multidimensional systems theory. D. Reidel.Google Scholar
  3. Bose N. K. (2003) Multidimensional systems: Theory and applications. Kluwer, Dordrecht,The NetherlandszbMATHGoogle Scholar
  4. Goldstein S. (1980) Remarks on the global Markov property. Communications in Mathematical Physics 77: 223–234CrossRefGoogle Scholar
  5. Rapisarda P., Willems J. C. (1997) State maps for linear systems. SIAM Journal of Control and Optimization 35: 1053–1091zbMATHCrossRefMathSciNetGoogle Scholar
  6. Rocha, P., & Willems, J. C. (1990). Markovian properties for 2-D systems. In M. A. Kaashoek, J. H. Van Schuppen, & A. C. M. Ran (Eds.), Realization and modelling in system theory—proceedings of the international symposium MTNS-89, vol. I, progress in systems and control (vol. 3, pp. 343–349). Birkhäuser.Google Scholar
  7. Rocha, P., & Willems, J. C. (2005). Infinite-dimensional systems described by first order PDE’s. In Proceedings of the fourth international workshop on multidimensional systems, NDS 2005 (pp. 54–58). Wuppertal, Germany.Google Scholar
  8. Rocha P., Willems J. C. (2006) Markov properties for systems described by PDE’s and first-order representations. Systems & Control Letters 55: 538–542zbMATHCrossRefMathSciNetGoogle Scholar
  9. Willems J. C. (1989) Models for dynamics. Dynamics Reported 2: 171–269MathSciNetGoogle Scholar
  10. Willems J.C. (2004) State and first order representations. In: Blondel V.D., Megretski A. (eds) Unsolved problems in mathematical systems and control theory. Princeton University Press, Princeton, NJ, pp 171–269Google Scholar
  11. Zerz E. (1996) Primeness of multivariable polynomial matrices. Systems & Control Letters 29: 139–145zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Faculty of EngineeringUniversity of OportoPortoPortugal
  2. 2.K.U. Leuven, ESAT/SCD (SISTA)Leuven-HeverleeBelgium

Personalised recommendations