Multidimensional Systems and Signal Processing

, Volume 21, Issue 4, pp 319–342 | Cite as

Polarimetric SAR image segmentation with B-splines and a new statistical model

  • Alejandro C. Frery
  • Julio Jacobo-Berlles
  • Juliana Gambini
  • Marta E. Mejail
Article

Abstract

We present an approach for polarimetric Synthetic Aperture Radar (SAR) image region boundary detection based on the use of B-Spline active contours and a new model for polarimetric SAR data: the \({\mathcal{G}_P^H}\) distribution. In order to detect the boundary of a region, initial B-Spline curves are specified, either automatically or manually, and the proposed algorithm uses a deformable contours technique to find the boundary. In doing this, the parameters of the polarimetric \({\mathcal{G}_P^H}\) model for the data are estimated, in order to find the transition points between the region being segmented and the surrounding area. This is a local algorithm since it works only on the region to be segmented. Results of its performance are presented.

Keywords

Polarimetric signal analysis Synthetic aperture radar Complex-valued sensing Edge detection Statistical model Specklenoise Estimation B-spline curves 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allende H., Frery A. C., Galbiati J., Pizarro L. (2006) M-estimators with asymmetric influence functions: The GA0 distribution case. Journal of Statistical Computation and Simulation 76(11): 941–956CrossRefMathSciNetMATHGoogle Scholar
  2. Blake A., Isard M. (1998) Active contours. Springer, BerlinGoogle Scholar
  3. Bustos O. H., Lucini M. M., Frery A. C. (2002) M-estimators of roughness and scale for GA0-modelled SAR imagery. EURASIP Journal on Applied Signal Processing 2002(1): 105–114CrossRefMATHGoogle Scholar
  4. Conradsen K., Nielsen A. A., Schou J., Skriver H. (2003) A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data. IEEE Transactions on Geoscience and Remote Sensing 41(1): 4–19CrossRefGoogle Scholar
  5. Cribari-Neto F., Frery A. C., Silva M. F. (2002) Improved estimation of clutter properties in speckled imagery. Computational Statistics and Data Analysis 40(4): 801–824CrossRefMathSciNetMATHGoogle Scholar
  6. Davidson G., Ouchi K., Saito G., Ishitsuka N., Mohri K., Uratsuka S. (2006) Single-look classification accuracy for polarimetric SAR. International Journal of Remote Sensing 27(22): 5073–5080CrossRefGoogle Scholar
  7. Devroye L. (1986) Non-uniform random variate generation. Springer, BerlinMATHGoogle Scholar
  8. Dierking W., Busche T. (2006) Sea ice monitoring by L-bands AR: An assessment based on literature and comparisons of JERS-1 and ERS-1 imagery. IEEE Transactions on Geoscience and Remote Sensing 44(4): 957–970CrossRefGoogle Scholar
  9. Dierking W., Skriver H. (2002) Change detection for thematic mapping by means of airborne multitemporal polarimetric SAR imagery. IEEE Transactions on Geoscience and Remote Sensing 40(3): 618–636CrossRefGoogle Scholar
  10. European Space Agency. The applications of SAR data—an overview. http://earth.esa.int/applications/data_util/SARDOCS.
  11. Figueiredo M. A. T., Leitao J. M. N., Jain A. K. (2000) Unsupervised contour representation and estimation using B-splines and a minimum description length criterion. IEEE Transactions on Image Processing 9(6): 1075–1087CrossRefMathSciNetMATHGoogle Scholar
  12. Freitas C. C., Frery A. C., Correia A. H. (2005) The polarimetric G distribution for SAR data analysis. Environmetrics 16(1): 13–31CrossRefMathSciNetGoogle Scholar
  13. Frery A., Correia A., Freitas C. (2007) Classifying multifrequency fully polarimetric imagery with multiple sources of statistical evidence and contextual information. IEEE Transactions on Geoscience and Remote Sensing 45(10): 3098–3109CrossRefGoogle Scholar
  14. Frery A. C., Cribari-Neto F., Souza M. O. (2004) Analysis of minute features in speckled imagery with maximum likelihood estimation. EURASIP Journal on Applied Signal Processing 2004(16): 2476–2491CrossRefMATHGoogle Scholar
  15. Frery A. C., Müller H. -J., Yanasse C. C. F., Sant’Anna S. J. S. (1997) A model for extremely heterogeneous clutter. IEEE Transactions on Geoscience and Remote Sensing 35(3): 648–659CrossRefGoogle Scholar
  16. Frery A. C., Sant’Anna S. J. S., Mascarenhas N. D. A., Bustos O. H. (1997) Robust inference techniques for speckle noise reduction in 1-look amplitude SAR images. Applied Signal Processing 4: 61–76Google Scholar
  17. Gambini J., Mejail M., Jacobo-Berlles J., Frery A. (2006) Feature extraction in speckled imagery using dynamic B-spline deformable contours under the G0 model. International Journal of Remote Sensing 27(22): 5037–5059CrossRefGoogle Scholar
  18. Gambini J., Mejail M., Jacobo-Berlles J., Frery A. (2008) Accuracy of local edge detection in speckled imagery. Statistics & Computing 18(1): 15–26CrossRefMathSciNetGoogle Scholar
  19. Goodman J. W. (1985) Statistical optics, pure and applied optics. Wiley, New York, USAGoogle Scholar
  20. Goodman N. R. (1963a) The distribution of the determinant of a complex Wishart distribuited matrix. Annals of Mathematical Statistics 34: 178–180CrossRefMathSciNetMATHGoogle Scholar
  21. Goodman N. R. (1963b) Statistical analysis based on a certain complex Gaussian distribution. (An introduction). Annals of Mathematical Statistics 34: 152–177CrossRefMathSciNetMATHGoogle Scholar
  22. Gordon S. D., Ritcey J. A. (1995) Calculating the K-distribution by saddlepoint integration. IEE Proceedings in Radar, Sonar and Navigation 142(4): 162–166CrossRefGoogle Scholar
  23. Goudail F., Refregier P. (2004) Contrast definition for optical coherent polarimetric images. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(7): 947–951CrossRefGoogle Scholar
  24. Gradshteyn I. S., Ryzhik I. M. (1980) Table of integrals, series and products. Academic Press, New YorkMATHGoogle Scholar
  25. Horn, R. (1998). E-SAR: The experimental airborne L/C-band SAR system of DFVLR. In Proceedings IGARSS ’98: IEEE International Geoscience and Remote Sensing Symposium, (vol 2, pp. 1025–1026).Google Scholar
  26. Horta, M. M., Mascarenhas, N., Frery, A. C., & Levada, A. (2008). Clustering of fully polarimetric SAR data using finite G0-mixture model and SEM algorithm. In Proceedings IWSSIP ’08: 15th International Conference on Systems, Signals and Image Processing, (pp. 81–84), 25–28 June 2008.Google Scholar
  27. Jørgensen B. (1982) Statistical properties of the generalized inverse Gaussian distribution, volume 9 of Lecture notes in statistics. Springer, New YorkGoogle Scholar
  28. Lee J.-S., Grunes M., Pottier E., Ferro-Famil L. (2004) Unsupervised terrain classification preserving polarimetric scattering characteristics. Geoscience and Remote Sensing. IEEE Transactions on 42(4): 722–731CrossRefGoogle Scholar
  29. Lee J. -S., Pottier E. (2009) Polarimetric radar imaging: From basics to applications. CRC, Boca RatonCrossRefGoogle Scholar
  30. Mejail M., Jacobo-Berlles J. C., Frery A. C., Bustos O. H. (2003) Classification of SAR images using a general and tractable multiplicative model. International Journal of Remote Sensing 24(18): 3565–3582CrossRefGoogle Scholar
  31. Mejail M. E., Frery A. C., Jacobo-Berlles J., Bustos O. H. (2001) Approximation of distributions for SAR images: Proposal, evaluation and practical consequences. Latin American Applied Research 31: 83–92Google Scholar
  32. Migliaccio M., Gambardella A., Tranfaglia M. (2007) SAR polarimetry to observe oil spills. IEEE Transactions on Geoscience and Remote Sensing 45(2): 506–511CrossRefGoogle Scholar
  33. Nascimento A.D.C., Cintra R.J., Frery A.C. (2010) Hypothesis testing in speckled data with stochastic distances. IEEE Transactions on Geoscience and Remote Sensing 48: 373–385CrossRefGoogle Scholar
  34. Oliver C., Quegan S. (1998) Understanding synthetic aperture radar images. Artech House, BostonGoogle Scholar
  35. Quartulli M., Datcu M. (2004) Stochastic geometrical modelling for built-up area understanding from a single SAR intensity image with meter resolution. IEEE Transactions on Geoscience and Remote Sensing 42(9): 1996–2003CrossRefGoogle Scholar
  36. Rogers D. F., Adams J. A. (1990) Mathematical elements for computer graphics (2nd ed.). McGraw-Hill, New York, USAGoogle Scholar
  37. Sant’Anna S. J. S., Lacava J. C. S., Fernandes D. (2008) From Maxwells equations to polarimetric SAR images: A simulation approach. Sensors 8: 7380–7409CrossRefGoogle Scholar
  38. Schou, J., Dierking, W., & Skriver, H. (2000). Tensor based structure estimation in multi-channel images. In Proceedings IGARSS ’00: IEEE International Geoscience and Remote Sensing Symposium, (vol 2, pp. 663–665).Google Scholar
  39. Seshadri V. (1993) The inverse Gaussian distribution: A case study in exponential families. Claredon Press, OxfordGoogle Scholar
  40. Silva M., Cribari-Neto F., Frery A. C. (2008) Improved likelihood inference for the roughness parameter of the GA0 distribution. Environmetrics 19(4): 347–368CrossRefMathSciNetGoogle Scholar
  41. Srivastava M. S. (1965) On the complex Wishart distribution. Annals of Mathematical Statistics 36(1): 313–315CrossRefMathSciNetMATHGoogle Scholar
  42. Udupa J. K., LeBlanc V. R., Zhuge Y., Imielinska C., Schmidt H., Currie L. M., Hirsch B. E., Woodburn J. (2006) A framework for evaluating image segmentation algorithms. Computerized Medical Imaging and Graphics 30(2): 75–87CrossRefGoogle Scholar
  43. Vasconcellos K. L. P., Frery A. C., Silva L. B. (2005) Improving estimation in speckled imagery. Computational Statistics 20(3): 503–519CrossRefMathSciNetMATHGoogle Scholar
  44. Wang H., Ouchi K. (2008) Accuracy of the K-distribution regression model for forest biomass estimation by high-resolution polarimetric SAR: Comparison of model estimation and field data. IEEE Transactions on Geoscience and Remote Sensing 46(4): 1058–1064CrossRefGoogle Scholar
  45. Yueh S. H., Kong J. A., Jao J. K., Shin R. T., Zebker H. A., Toan T.L., Ottl H. (1990) K-distribution and polarimetric terrain radar clutter. Progress in Electromagnetics Research (PIER) 03: 237–275Google Scholar
  46. Zebker H.A., Van Zyl J.J. (1991) Imaging radar polarimetry: A review. Proceedings of the IEEE 79(11): 1583–1606CrossRefGoogle Scholar
  47. Zhang L. (2008) In Situ image segmentation using the convexity of illumination distribution of the light sources. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(10): 1786–1799CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Alejandro C. Frery
    • 1
  • Julio Jacobo-Berlles
    • 2
  • Juliana Gambini
    • 2
  • Marta E. Mejail
    • 2
  1. 1.Instituto de ComputaçãoUniversidade Federal de AlagoasMaceióBrazil
  2. 2.Departamento de ComputaciónUniversidad de Buenos AiresBuenos AiresArgentina

Personalised recommendations