On the computation of the inverse of a two-variable polynomial matrix by interpolation



Two interpolation algorithms are presented for the computation of the inverse of a two variable polynomial matrix. The first interpolation algorithm, is based on the Lagrange interpolation method that matches pre-assigned data of the determinant and the adjoint of a two-variable polynomial matrix, on a set of points on several circles centered at the origin. The second interpolation algorithm is using discrete fourier transforms (DFT) techniques or better fast fourier transforms which are very efficient algorithms available both in software and hardware and that they are greatly benefitted by the existence of a parallel environment (through symmetric multiprocessing or other techniques). The complexity of both algorithms is discussed and illustrated examples are given. The DFT-algorithm is implemented in the Mathematica programming language and tested in comparison to the respective built-in function of Mathematica.


Fast Fourier Transform Discrete Fourier Transform Interpolation Problem Polynomial Matrix Interpolation Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Antoniou G. E., Glentis G. O. A., Varoufakis S. J., Karras D. A. (1989) Transfer function determination of singular systems using the DFT. IEEE Transaction on Circuits and Systems 36(8): 1140–1142CrossRefMathSciNetGoogle Scholar
  2. Antoniou E. G. (2001) Transfer function computation for generalized N-dimensional systems. Journal of the Franklin Institute 338: 83–90CrossRefMATHMathSciNetGoogle Scholar
  3. Basilio J. C. (2002) Inversion of polynomial matrices via state-space. Linear Algebra and its Applications 357: 259–271CrossRefMATHMathSciNetGoogle Scholar
  4. Borchardt, W. (1860). Über eine Interpolationsformel f ür eine Art symmetrischer Funktionen und deren Anwendung (pp. 1–20), Abh. d. Preu β. Akad. d. Wiss..Google Scholar
  5. Borgmann M., & Bolcskei H. (2004) Interpolation-based efficient matrix inversion for MIMO-OFDM receivers, Vol 2 (pp. 1941–1947). Thirty-Eighth Asilomar Conference on Signals, Systems and Computers 2004. Google Scholar
  6. Borislav B., Yuan Xu (2002) On a hermite interpolation by polynomials of two variables. SIAM Journal of Numerical Analaysis 39: 1780–1793CrossRefMATHGoogle Scholar
  7. Borislav B., Yuan X. (2003) On polynomial interpolation of two variables. Journal of Approximation Theory 120(2): 267–282CrossRefMATHMathSciNetGoogle Scholar
  8. Buslowicz M. (1981) Inversion of polynomial matrices. International Journal of Control 33(5): 977–984CrossRefMATHMathSciNetGoogle Scholar
  9. Downs T. (1971) On the inversion of a matrix of rational functions. Linear Algebra and Application 4: 1–10CrossRefMATHMathSciNetGoogle Scholar
  10. Dudgeon D., Mersereau R. (1984) Multidimensional digital signal processing. Prentice Hall, Englewood CliffsMATHGoogle Scholar
  11. Fragulis G., Mertzios B. G., Vardulakis A. I. G. (1991) Computation of the inverse of a polynomial matrix and evaluation of its Laurent expansion. International Journal of Control 53: 431–433CrossRefMATHMathSciNetGoogle Scholar
  12. Frigo M., & Johnson S. (1998) FFTW: An adaptive software architecture for the FFT (pp. 1381–1384). in. ICASSP Conference Proceedings 3. Google Scholar
  13. Gasca M., Martinez Jose J. (1992) Bivariate Hermite-Birkhoff interpolation and vandermonde determinants. Numerical Algorithms 2: 193–199CrossRefGoogle Scholar
  14. Gasca M., Sauer T. (2000a) On the history of multivariate polynomial interpolation, numerical analysis 2000, Vol. II: Interpolation and extrapolation. Journal of Computation Application in Mathematics 122(1-2): 23–35CrossRefMATHMathSciNetGoogle Scholar
  15. Gasca M., Sauer T. (2000b) Polynomial interpolation in several variables. Multivariate polynomial interpolation. Advances in Computational Mathematics 12: 377–410CrossRefMATHMathSciNetGoogle Scholar
  16. Hakopian H., Ismail S. (2002) On a bivariate interpolation problem. Journal of Approximation Theory 116: 76–99CrossRefMATHMathSciNetGoogle Scholar
  17. Hromcik, M., & Sebek, M. (2001). Fast fourier transform and linear polynomial matrix equations. Proceedings of the 1rst IFAC Workshop on Systems Structure and Control, Prague, Czech Republic.Google Scholar
  18. Kaczorek, T. (1985). Two-dimensional linear systems. Lecture notes in control and information sciences. Springer-Verlag New York.Google Scholar
  19. Karampetakis N. P., Vologiannidis S. (2003) DFT calculation of the generalized and Drazin inverse of a polynomial matrix. Applied Mathematics and Computation 143: 501–521CrossRefMATHMathSciNetGoogle Scholar
  20. Karampetakis N. P., Vologiannidis S. (2003) DFT calculation of the generalized and Drazin inverse of a polynomial matrix. Applied Mathematics and Computation 143: 501–521CrossRefMATHMathSciNetGoogle Scholar
  21. Koo C. S., Chen C. T. (1977) Faddeeva’s algorithm for spatial dynamic equations. Proceedings of IEEE 65: 975–976CrossRefGoogle Scholar
  22. Kronecker, L. (1865) Über einige Interpolationsformeln für ganze Funktionen mehrerer Variabeln. Lecture at the academy of sciences, December 21, 1865, In H. Hensel (Ed.), L. Kroneckers Werke, Vol. I, Teubner, Stuttgart, 1895, pp. 133–141. (reprinted by Chelsea, New York, 1968).Google Scholar
  23. Kucera V. (1979) Discrete linear control: The polynomial approach. Wiley, New YorkMATHGoogle Scholar
  24. Lin C. A., Yang C. W., Hsieh T. F. (1996) Inversion of polynomial matrices. Systems & Control Letters 27: 47–54CrossRefMATHMathSciNetGoogle Scholar
  25. Lipson John, D. (1976) The fast fourier transform, Its role as an algebraic algorithm. Proceedings of the ACM Annual Conference/Annual Meeting (pp. 436–441).Google Scholar
  26. Lobo R., Bitzer D. L., Vouk M. A. (2006) Locally invertible multivariate polynomial matrices. Coding and Cryptography, Lecture Notes in Computer Science 3969: 427–441MathSciNetGoogle Scholar
  27. Mertzios B. G. (1984) Leverrier’s algorithm for singular systems. IEEE Transactions on Automatic Control 29: 652–653CrossRefMATHMathSciNetGoogle Scholar
  28. Mertzios B. G. (1986) An algorithm for the computation of the transfer function matrix of two dimensional systems. Journal of Franklin Inst 32: 74–80Google Scholar
  29. Mertzios B. G., Lewis F. (1988) An algorithm for the computation of the transfer function matrix of generalized two dimensional systems. Circuit Systems and Signal Process 7: 459–466CrossRefMATHMathSciNetGoogle Scholar
  30. Nam O. T., Ohta Y., Matsumoto T. (1978) Inversion of rational matrices by using FFT algorithm. Transaction on IECE Japan E 61: 732–733Google Scholar
  31. Paccagnella L. E., Pierobon G. L. (1976) FFT calculation of a determinantal polynomial. IEEE Transaction on Automatic Control 29(3): 401–402CrossRefGoogle Scholar
  32. Schuster A., Hippe P. (1992) Inversion of polynomial matrices by interpolation. IEEE Transactions on Automatic Control 37: 363–365CrossRefMathSciNetGoogle Scholar
  33. Stefanidis P., Paplinski A. P., Gibbard M. J. (1992) Numerical operations with polynomial matrices, lecture notes in control and information sciences (Vol. 171). Springer, BerlinGoogle Scholar
  34. Tzekis P., Karampetakis N. P., Terzidis H. K. (2007) On the computations of the G.C.D of 2-d polynomials. Journal of Applied Mathematics and Computer Science 17: 463–470MATHMathSciNetGoogle Scholar
  35. Vidyasagar M. (1985) Control systems synthesis: A factorization approach. M.I.T, Cambridge, MAGoogle Scholar
  36. Vologiannidis S., Karampetakis N. P. (2004) Inverses of multivariable polynomial matrices by discrete fourier transforms. Multidimensional Systems and Signal Processing 15: 341–361CrossRefMATHMathSciNetGoogle Scholar
  37. Wolovich W. A. (1974) Linear multivariable systems. Springer, New-YorkCrossRefMATHGoogle Scholar
  38. Zadeh L. A., Desoer C. A. (1963) Linear system theory. McGraw-Hill, New YorkMATHGoogle Scholar
  39. Zhang S. (1987) Inversion of polynomial matrices. International Journal of Control 46: 33–37CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Nicholas P. Karampetakis
    • 1
  • Alexandros Evripidou
    • 1
  1. 1.Department of MathematicsAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations