Super-resolution reconstruction in a computational compound-eye imaging system

  • Wai-San Chan
  • Edmund Y. Lam
  • Michael K. Ng
  • Giuseppe Y. Mak
Original Article

Abstract

From consumer electronics to biomedical applications, device miniaturization has shown to be highly desirable. This often includes reducing the size of some optical systems. However, diffraction effects impose a constraint on image quality when we simply scale down the imaging parameters. Over the past few years, compound-eye imaging system has emerged as a promising architecture in the development of compact visual systems. Because multiple low-resolution (LR) sub-images are captured, post-processing algorithms for the reconstruction of a high-resolution (HR) final image from the LR images play a critical role in affecting the image quality. In this paper, we describe and investigate the performance of a compound-eye system recently reported in the literature. We discuss both the physical construction and the mathematical model of the imaging components, followed by an application of our super-resolution algorithm in reconstructing the image. We then explore several variations of the imaging system, such as the incorporation of a phase mask in extending the depth of field, which are not possible with a traditional camera. Simulations with a versatile virtual camera system that we have built verify the feasibility of these additions, and we also report the tolerance of the compound-eye system to variations in physical parameters, such as optical aberrations, that are inevitable in actual systems.

Keywords

Super-resolution Compound-eye Phase-mask 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bose N.K., Boo K.J. (1998). High-resolution image reconstruction with multisensors. International Journal of Imaging Systems and Technology 9(4): 294–304CrossRefGoogle Scholar
  2. Castleman K.R. (1996). Digital image processing. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  3. Castro A., Ojeda-Castañeda J. (2004). Asymmetric phase masks for extended depth of field. Applied Optics 43(17): 3474–3479CrossRefGoogle Scholar
  4. Dowski E.R. Jr., Cathey W.T. (1994). Single-lens single-image incoherent passive-ranging systems. Applied Optics 33(29): 6762–6773CrossRefGoogle Scholar
  5. Dowski E.R. Jr., Cathey W.T. (1995). Extended depth of field through wave-front coding. Applied Optics 34(11): 1859–1866Google Scholar
  6. Duparré J., Dannberg P., Schreiber P., Bräuer A., Tünnermann A. (2005). Thin compound eye camera. Applied Optics 44(15): 2949–2956CrossRefGoogle Scholar
  7. Duparré, J., Schreiber, P., Dannberg, P., Scharf, T., Pelli, P., Völkel, R., Herzig, H.-P., & Bräuer, A. (2004). Artificial compound eyes—different concepts and their application to ultra flat image acquisition sensors. In: MOEMS and miniaturized systems IV, ser. proceedings of the SPIE, San Jose, California, USA, Vol. 5346, pp. 89–100.Google Scholar
  8. Duparré J., Schreiber P., Matthes A., Pshenay-Severin E., Bräuer A., Tünnermann A. (2005). Microoptical telescope compound eye. Optics Express 13(3): 889–903CrossRefGoogle Scholar
  9. Elad M., Feuer A. (1997). Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images. IEEE Transactions on Image Processing 6(12): 1646–1658CrossRefGoogle Scholar
  10. Goodman J.W. (1996). Introduction to fourier optics. 2nd ed. McGraw-Hill, New YorkGoogle Scholar
  11. Hornsey, R., Thomas, P., Wong, W., Pepic, S., Yip, K., & Krishnasamy, R. (2004). Electronic compound-eye image sensor: Construction and calibration. In: Proceedings of the IS&T/SPIE symposium on electronic imaging 2004. Niagara Falls, Ontario, Candada.Google Scholar
  12. Katsaggelos A.K. (1991). Digital image restoration. Springer, New YorkGoogle Scholar
  13. Kitamura Y., Showgenji R., Yamada K., Miyatake S., Miyamoto M. Morimoto, T., Masaki, Y., Kondou, N., Miyazaki, D., & Tanida, J. (2004). Reconstruction of a high-resoloution image on a compound-eye image-capturing system. Applied Optics, 43(8), 1719–1727.Google Scholar
  14. Krishnasamy, R., Wong, W., Shen, E., Pepic, S., Hornsey, R., & Thomas, P. (2004). High precision target tracking with a compound-eye image sensor. In: Canadian conference on electrical and computer engineering 2004, San Jose, California, USA.Google Scholar
  15. Lam E.Y. (2002). Digital restoration of defocused images in the wavelet domain. Applied Optics 41(23): 4806–4811Google Scholar
  16. Lam E.Y., Goodman J.W. (1998). Discrete cosine transform domain restoration of defocused images. Applied Optics 37(26): 6213–6218CrossRefGoogle Scholar
  17. Mait J.N., Athale R., van der Gracht J. (2003). Evolutionary paths in imaging and recent trends. Optics Express 11(18): 2093–2101CrossRefGoogle Scholar
  18. Neumann, J., Fermüller, C., Aloimonos, Y., & Brajovic, V. (2004). Compound eye sensor for 3D ego motion estimation. In: Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS ’04), IEEE.Google Scholar
  19. Ng M., Bose N.K. (2002). Analysis of displacement errors in high-resolution image reconstruction with multisensors. IEEE Transactions on Circuits and Systems I 49, 806–813CrossRefGoogle Scholar
  20. Ng M.K., Bose N.K. (2003). Mathematical analysis of super-resolution methodology. IEEE Signal Processing Magazine 20(3): 62–74CrossRefGoogle Scholar
  21. Ng M.K., Chan R.H., Chan T.F., Yip A.M. (2000). Cosine transform preconditioners for high resolution image reconstruction. Linear Algebra and Its Applications 316(1–3): 89–104MATHCrossRefMathSciNetGoogle Scholar
  22. Ng M., Yip A. (2001). A fast MAP algorithm for high-resolution image reconstruction with multisensors. Multidimensional Systems and Signal Processing 12(2): 143–164MATHCrossRefMathSciNetGoogle Scholar
  23. Prasad S., Torgersen T., Pauca P., Plemmons R., van der Gracht J. (2004). High-resolution imaging using integrated optical systems. International Journal on Imaging Systems and Technology 14(2): 67–74CrossRefGoogle Scholar
  24. Sherif S.S., Cathey W.T., Dowski E.R. (2004). Phase plate to extend the depth of field of incoherent hybrid imaging systems. Applied Optics 43(13): 2709–2721CrossRefGoogle Scholar
  25. Tanida J., Kumagai T., Yamada K., Miyatake S., Ishida K., Morimoto T., Kondou N., Miyazaki D., Ichioka Y. (2001). Thin observation module by bound optics (TOMBO): Concept and experimental verification. Applied Optics 40(11): 1806–1813Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Wai-San Chan
    • 1
  • Edmund Y. Lam
    • 1
  • Michael K. Ng
    • 2
  • Giuseppe Y. Mak
    • 1
  1. 1.Department of Electrical and Electronic EngineeringThe University of Hong KongHong KongHong Kong
  2. 2.Department of MathematicsHong Kong Baptist UniversityHong KongHong Kong

Personalised recommendations