State Space Realization of a Three-dimensional Image Set with Application to Noise Reduction of Fluorescent Microscopy Images of Cells

  • Raimund J. OberEmail author
  • Xuming Lai
  • Zhiping Lin
  • E. Sally Ward
Open Access


A method is presented to calculate state space realizations of a three-dimensional image set. It is based on interpreting the image set as the impulse response of a 3D separable system. As an application it is shown how this method, combined with approximation steps, including balanced model reduction, can be used to suppress noise in three-dimensional image sets. The approach was motivated by a practical problem in the analysis of three-dimensional fluorescent microscopy image data of fluorescently labelled cells. The method is illustrated by an analysis of simulated data and experimental data. The proposed approach can also be applied to a two-dimensional image in a straightforward way.


multi-dimensional state space realization separable n-D system image processing noise suppression balanced realization fluorescent microscopy 


  1. S. Inoue and K.R. Spring, Video Microscopy: The Fundamentals, Plenum Pub Corp., 1997.Google Scholar
  2. Agard, D.A. 1984“Optical Sectioning Microscopy: Cellular Architecture in Three Dimensions”Annual Review of Biomedical Engineering13191216Google Scholar
  3. Agard, D.A., Hiraoka, Y., Sedat, J.W. 1989“Three-dimensional Microscopy: Image Processing for High Resolution Subcellular Imaging”SPIE612430Google Scholar
  4. Kempen, G.M.P. van, Vliet, L.J. van 2000“The Influence of the Regularization Parameter and the First Estimate on the Performance of Tikhonov Regularized Non-linear Image Restoration Algorithms”Journal of Microscopy1986375Google Scholar
  5. Kempen, G.M.P. van, Vliet, L.J. van, Verveer, P.J., Voort, H.T.M. van der 1997“A Quantitative Comparison of Image Restoration Methods for Confocal Microscopy”Journal of Microscopy185354365Google Scholar
  6. Roysam, B., Bhattacharjya, A.K., Srinivas, C., Szarowski, D.H., Turner, J.N. 1992“Unsupervised Noise Removal Algorithms for Three-dimensional Confocal Fluorescence Microscopy”Micron and Microscopica Acta23447461Google Scholar
  7. Doi, A., Hinamoto, T. 2001“A Spatial-domain Technique for the Design of 3-D Separable-denominator State-space Digital Filters”Multidimensional Systems and Signal Processing128998Google Scholar
  8. T. Hinamoto and A. Doi, “Design of Multidimensional Separable-denominator Digital Filters in the Spatial Domain”, in Proceedings of IEEE Asia Pacific Conference on Circuits and Systems, Seoul, Korea, 1996, pp. 219–222.Google Scholar
  9. Hinamoto, T., Doi, A., Harada, K. 1997“Design of Multidimensional Separable-denominator Digital Filters in the Spatial Domain”Multidimensional Systems and Signal Processing8273293Google Scholar
  10. Hirano, K., Sakane, M., Mulk, M.Z. 1984“Design of Three-dimensional Recursive Digital Filters”IEEE Transactions on Circuits and SystemsCAS-31550561Google Scholar
  11. Lashgari, B., Silverman, L.M., Abramatic, J.F. 1983“Approximation of 2-D Separable in Denominator Filters”IEEE Transactions on Circuits and SystemsCAS-30107121Google Scholar
  12. Ober, R.J. 1996Bittanti, S.Picci, G. eds. “Balanced Canonical Forms”, in Identification; Adaptation; LearningSpringer-VerlagBerlin120179Google Scholar
  13. Green, M., Limebeer, D.J.N. 1995Linear Robust ControlPrentice-Hall Inc.New JerseyGoogle Scholar
  14. Zhou, K, Doyle, J.C, Glover, K. 1996Robust Optimal ControlPrentice-Hall Inc.New JerseyGoogle Scholar
  15. Lu, W.S, Antoniou, A. 1992Two-dimensional Digital FiltersMarcel Dekker Inc.New YorkGoogle Scholar
  16. Hansen, P.S.K., Hansen, P.C., Hansen, S.D., Sorensen, J.A. 1999“Experimental Comparison of Signal Subspace Based Noise Reduction Methods”Proceedings of International Conference on Acoustics Speech and Signal Processing1101104Google Scholar
  17. Lin, T., Kawamata, M., Higuchi, T. 1987“Design of 2-D Separable-denominator Digital Filters Based on the Reduced-dimensional Decomposition”IEEE Transactions on Circuits and SystemsCAS-34934941Google Scholar
  18. Lin, T., Kawamata, M., Higuchi, T. 1987“Decomposition of 2-D Separable-denominator Systems: Existence Uniqueness and Applications”IEEE Transactions on Circuits and SystemsCAS-34292296Google Scholar
  19. Kailath, T. 1980Linear SystemsPrentice-Hall Inc.New JerseyGoogle Scholar
  20. Moore, B. 1981“Principal Component Analysis in Linear Systems: Controllability Observability and Model Reduction”IEEE Transactions on Automatic ControlAC-261732Google Scholar
  21. S.Y. Kung, “A New Identification and Model Reduction Algorithm via Singular Value Decompositions”, in Proceedings of the 12th Asilomar Conference on Signals, Systems and Computers, 1978, pp. 705–714.Google Scholar
  22. H.P. Zeiger and A.J. McEwen, “Approximate Linear Realizations of Given Dimension via Ho’s Algorithm”, IEEE Transactions on Automatic Control, vol. AC-19, no. 153, 1974.Google Scholar
  23. Maciejowski, J.M. 1995“Guaranteed Stability with Subspace Methods”Systems and Control Letters26153156Google Scholar
  24. Kailath, T., Sayed, A.H, Hassibi, B. 2000Linear EstimationPrentice-Hall Inc.New JerseyGoogle Scholar
  25. Pernebo, L., Silverman, L.M. 1982“Model Reduction via Balanced State Space Representations”IEEE Transactions on Automatic ControlAc-27382387Google Scholar
  26. Pijnappel, W.W.F., Boogaart, A. van den, Beer, R. de, Ormondt, D. van 1992“SVD-Based Quantification of Magnetic Resonance Signals”Journal of Magnetic Resonance97122134Google Scholar
  27. Ober, R.J., Ward, E.S. 1995“Correcting for Phase Distortion of NMR Spectra Analyzed Using Singular-value Decomposition of Hankel Matrices”Journal of Magnetic ResonanceA 114120123Google Scholar
  28. Ober, R.J., Caves, J., Ward, E.S. 2003“Analysis of Exponential Data Using a Noniterative Technique: Application to Surface Plasmon Experiments”Analytical Biochemistry3125765Google Scholar
  29. L.J. van Vliet, “Grey-Scale Measurements in Multi-Dimensional Digitized Images”, Ph.D. thesis, University of Delft, 1993.Google Scholar
  30. Chen, H., Swedlow, J.R., Grote, M., Sedat, J.W., Agard, D.A. 1995“The Collection Processing and Display of Digital Three-Dimensional Images of Biological Specimens”Pawley, J. B. eds. Handbook of Biological Confocal Microscopy2Plenum PressNew York197210Google Scholar
  31. G.M.P. van Kempen and L.J. van Vliet, “Improving the restoration of textured objects with prefiltering”, in Proceedings of 3rd Annual Conference of the Advanced School for Computing and Imaging (ASCI’97) 1997, pp. 174–179.Google Scholar
  32. Ghetie, V., Ward, E.S. 2000“Multiple Roles for the Major Histocompatibility Complex Class I Related Receptor FcRn”Annual Review of Immunology18739766Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Raimund J. Ober
    • 1
    • 2
    Email author
  • Xuming Lai
    • 1
    • 2
  • Zhiping Lin
    • 3
  • E. Sally Ward
    • 1
    • 2
  1. 1.Department of Electrical EngineeringUniversity of Texas at DallasRichardsonUSA
  2. 2.Center for ImmunologyUniversity of Texas Southwestern Medical CenterDallasUSA
  3. 3.School of Electrical and Electronic EngineeringNanyang Technological UniversitySingaporeRepublic of Singapore

Personalised recommendations