Multibody System Dynamics

, Volume 47, Issue 4, pp 397–434 | Cite as

Adaptive sliding mode control of \(n\) flexible-joint robot manipulators in the presence of structured and unstructured uncertainties

  • Saeed Zaare
  • Mohammad Reza SoltanpourEmail author
  • Mazda Moattari


This study investigates a voltage-based adaptive sliding mode control (VB-ASMC) to tracking the position of an \(n\) rigid-link flexible-joint (RLFJ) robot manipulator under the presence of uncertainties and external disturbances. First, the dynamic equations of the \(n\)-RLFJ robot manipulator have been divided into \(n\) subsystems, and for each of them a voltage-based sliding mode control (VB-SMC) is designed simultaneously. The mathematical proof shows that the closed-loop system under VB-SMC has global asymptotic stability. Second, due to the use of the sign function in the VB-SMC structure, the occurrence of chattering is inevitable. Therefore, to overcome this problem, an adaptive estimator is designed to estimate the boundary of uncertainties. Since the adaptive estimator part in the VB-ASMC has only one law, the proposed control has a very low computational volume. The Lyapunov stability theorem shows that the controlled closed-loop system under the VB-ASMC has global asymptotic stability. Finally, extensive simulations on the single and 2-RLFJ robot manipulator and practical implementation on the single-RLFJ robot manipulator are presented to demonstrate the effectiveness and improved performance of the proposed control scheme.


Robot manipulator Joint flexibility Uncertainty Chattering Adaptive estimator Adaptive sliding mode control 



  1. 1.
    Zhang, Y., Jin, L.: Robot Manipulator Redundancy Resolution. Wiley, New York (2017) Google Scholar
  2. 2.
    Sharifnia, M., Akbarzadeh, A.: A constrained assumed modes method for dynamics of a flexible planar serial robot with prismatic joints. Multibody Syst. Dyn. 40(3), 261–285 (2017) MathSciNetzbMATHGoogle Scholar
  3. 3.
    Dwivedy, S.K., Eberhard, P.: Dynamic analysis of flexible manipulators, a literature review. Mech. Mach. Theory 41(7), 749–777 (2006) MathSciNetzbMATHGoogle Scholar
  4. 4.
    Kiang, C.T., Spowage, A., Yoong, C.K.: Review of control and sensor system of flexible manipulator. J. Intell. Robot. Syst. 77(1), 187–213 (2015) Google Scholar
  5. 5.
    Subudhi, B., Morris, A.S.: Dynamic modelling, simulation and control of a manipulator with flexible links and joints. Robot. Auton. Syst. 41(4), 257–270 (2002) zbMATHGoogle Scholar
  6. 6.
    Spong, M.W.: Modeling and control of elastic joint robots. J. Dyn. Syst. Meas. Control 109, 310–318 (1987). CrossRefzbMATHGoogle Scholar
  7. 7.
    Siciliano, B., Khatib, O.: Springer Handbook of Robotics. Springer, Berlin (2016) zbMATHGoogle Scholar
  8. 8.
    Olfati-Saber, R.: Nonlinear Control of Underactuated Mechanical Systems with Application to Robotics and Aerospace Vehicles. Massachusetts Inst. Technol. Press, Cambridge (2001) Google Scholar
  9. 9.
    Meng, D., She, Y., Xu, W., Lu, W., Liang, B.: Dynamic modeling and vibration characteristics analysis of flexible-link and flexible-joint space manipulator. Multibody Syst. Dyn. 43(4), 321–347 (2018) MathSciNetzbMATHGoogle Scholar
  10. 10.
    Jin, L., Li, S., Yu, J., He, J.: Robot manipulator control using neural networks: a survey. Neurocomputing 285, 23–34 (2018) Google Scholar
  11. 11.
    Gattringer, H., Oberhuber, B., Mayr, J., Bremer, H.: Recursive methods in control of flexible joint manipulators. Multibody Syst. Dyn. 32(1), 117–131 (2014) MathSciNetzbMATHGoogle Scholar
  12. 12.
    Miranda-Colorado, R., Moreno-Valenzuela, J.: Experimental parameter identification of flexible joint robot manipulators. Robotica 36(3), 313–332 (2018) Google Scholar
  13. 13.
    Ginoya, D., Shendge, P., Phadke, S.: Delta-operator-based extended disturbance observer and its applications. IEEE Trans. Ind. Electron. 62(9), 5817–5828 (2015) Google Scholar
  14. 14.
    Liu, H.-S., Huang, Y.: Bounded adaptive output feedback tracking control for flexible-joint robot manipulators. J. Zhejiang Univ. Sci. A 19(7), 557–578 (2018) Google Scholar
  15. 15.
    Korayem, M.H., Nekoo, S.R.: Finite-time state-dependent Riccati equation for time-varying nonaffine systems: rigid and flexible joint manipulator control. ISA Trans. 54, 125–144 (2015). CrossRefGoogle Scholar
  16. 16.
    Ulrich, S., Sasiadek, J.Z., Barkana, I.: Nonlinear adaptive output feedback control of flexible-joint space manipulators with joint stiffness uncertainties. J. Guid. Control Dyn. 37(6), 1961–1975 (2014) Google Scholar
  17. 17.
    Li, Y., Tong, S., Li, T.: Adaptive fuzzy output feedback control for a single-link flexible robot manipulator driven DC motor via backstepping. Nonlinear Anal., Real World Appl. 14(1), 483–494 (2013) MathSciNetzbMATHGoogle Scholar
  18. 18.
    Subudhi, B., Morris, A.S.: Singular perturbation based neuro-H\(\infty \) control scheme for a manipulator with flexible links and joints. Robotica 24(2), 151–161 (2006) Google Scholar
  19. 19.
    Abe, A.: Trajectory planning for flexible Cartesian robot manipulator by using artificial neural network: numerical simulation and experimental verification. Robotica 29(5), 797–804 (2011) Google Scholar
  20. 20.
    Chaoui, H., Gueaieb, W., Biglarbegian, M., Yagoub, M.C.: Computationally efficient adaptive type-2 fuzzy control of flexible-joint manipulators. Robotics 2(2), 66–91 (2013) Google Scholar
  21. 21.
    Chaoui, H., Gueaieb, W.: Type-2 fuzzy logic control of a flexible-joint manipulator. J. Intell. Robot. Syst. 51(2), 159–186 (2008) Google Scholar
  22. 22.
    Lightcap, C.A., Banks, S.A.: An extended Kalman filter for real-time estimation and control of a rigid-link flexible-joint manipulator. IEEE Trans. Control Syst. Technol. 18(1), 91–103 (2010) Google Scholar
  23. 23.
    Ulrich, S., Sasiadek, J.Z.: Extended Kalman filtering for flexible joint space robot control. In: American Control Conference, ACC, 2011, pp. 1021–1026. IEEE Press, New York (2011) Google Scholar
  24. 24.
    Nikdel, P., Hosseinpour, M., Badamchizadeh, M.A., Akbari, M.A.: Improved Takagi–Sugeno fuzzy model-based control of flexible joint robot via hybrid-Taguchi genetic algorithm. Eng. Appl. Artif. Intell. 33, 12–20 (2014) Google Scholar
  25. 25.
    Fateh, M.M.: On the voltage-based control of robot manipulators. Int. J. Control. Autom. Syst. 6(5), 702–712 (2008) Google Scholar
  26. 26.
    Fateh, M.M.: Robust control of flexible-joint robots using voltage control strategy. Nonlinear Dyn. 67(2), 1525–1537 (2012) MathSciNetzbMATHGoogle Scholar
  27. 27.
    Cheah, C.C., Liu, C., Slotine, J.J.E.: Adaptive Jacobian vision based control for robots with uncertain depth information. Automatica 46(7), 1228–1233 (2010) MathSciNetzbMATHGoogle Scholar
  28. 28.
    Izadbakhsh, A.: A note on the nonlinear control of electrical flexible-joint robots. Nonlinear Dyn. 89, 2753–2767 (2017) MathSciNetzbMATHGoogle Scholar
  29. 29.
    Fateh, M.M.: Nonlinear control of electrical flexible-joint robots. Nonlinear Dyn. 67(4), 2549–2559 (2012) MathSciNetzbMATHGoogle Scholar
  30. 30.
    Izadbakhsh, A.: Robust control design for rigid-link flexible-joint electrically driven robot subjected to constraint: theory and experimental verification. Nonlinear Dyn. 85(2), 751–765 (2016) MathSciNetzbMATHGoogle Scholar
  31. 31.
    Zirkohi, M.M., Fateh, M.M., Shoorehdeli, M.A.: Type-2 fuzzy control for a flexible-joint robot using voltage control strategy. Int. J. Autom. Comput. 10(3), 242–255 (2013) Google Scholar
  32. 32.
    Khooban, M.H., Niknam, T., Blaabjerg, F., Dehghani, M.: Free chattering hybrid sliding mode control for a class of non-linear systems: electric vehicles as a case study. IET Sci. Meas. Technol. 10(7), 776–785 (2016) Google Scholar
  33. 33.
    Shokoohinia, M.R., Fateh, M.M.: Robust dynamic sliding mode control of robot manipulators using the Fourier series expansion. Trans. Inst. Meas. Control 1–8 (2018). Google Scholar
  34. 34.
    Soltanpour, M.R., Zolfaghari, B., Soltani, M., Khooban, M.H.: Fuzzy sliding mode control design for a class of nonlinear systems with structured and unstructured uncertainties. Int. J. Innov. Comput. Inf. Control 9(7), 2713–2726 (2013) Google Scholar
  35. 35.
    Adhikary, N., Mahanta, C.: Integral backstepping sliding mode control for underactuated systems: swing-up and stabilization of the Cart–Pendulum System. ISA Trans. 52(6), 870–880 (2013) Google Scholar
  36. 36.
    Orlov, Y.V., Utkin, V.: Sliding mode control in indefinite-dimensional systems. Automatica 23(6), 753–757 (1987) MathSciNetzbMATHGoogle Scholar
  37. 37.
    Huang, A.-C., Chen, Y.-C.: Adaptive sliding control for single-link flexible-joint robot with mismatched uncertainties. IEEE Trans. Control Syst. Technol. 12(5), 770–775 (2004) Google Scholar
  38. 38.
    Zhang, L., Liu, L., Wang, Z., Xia, Y.: Continuous finite-time control for uncertain robot manipulators with integral sliding mode. IET Control Theory Appl. (2018). MathSciNetCrossRefGoogle Scholar
  39. 39.
    Soltanpour, M.R., Khooban, M.H.: A particle swarm optimization approach for fuzzy sliding mode control for tracking the robot manipulator. Nonlinear Dyn. 74(1–2), 467–478 (2013) MathSciNetzbMATHGoogle Scholar
  40. 40.
    Soltanpour, M.R., Otadolajam, P., Khooban, M.H.: Robust control strategy for electrically driven robot manipulators: adaptive fuzzy sliding mode. IET Sci. Meas. Technol. 9(3), 322–334 (2014) Google Scholar
  41. 41.
    Soltanpour, M.R., Khooban, M.H., Soltani, M.: Robust fuzzy sliding mode control for tracking the robot manipulator in joint space and in presence of uncertainties. Robotica 32(3), 433–446 (2014) Google Scholar
  42. 42.
    Zouari, L., Abid, H., Abid, M.: Sliding mode and PI controllers for uncertain flexible joint manipulator. Int. J. Autom. Comput. 12(2), 117–124 (2015) Google Scholar
  43. 43.
    Zhang, B., Yang, X., Zhao, D., Spurgeon, S.K., Yan, X.: Sliding mode control for nonlinear manipulator systems. IFAC-PapersOnLine 50(1), 5127–5132 (2017) Google Scholar
  44. 44.
    Suryawanshi, P.V., Shendge, P.D., Phadke, S.B.: A boundary layer sliding mode control design for chatter reduction using uncertainty and disturbance estimator. Int. J. Dyn. Control 4(4), 456–465 (2016) MathSciNetGoogle Scholar
  45. 45.
    Feng, Y., Han, F., Yu, X.: Chattering free full-order sliding-mode control. Automatica 50(4), 1310–1314 (2014) MathSciNetzbMATHGoogle Scholar
  46. 46.
    Ebrahimi, M.M., Piltan, F., Bazregar, M., Nabaee, A.: Artificial chattering free on-line modified sliding mode algorithm: applied in continuum robot manipulator. Int. J. Inf. Eng. Electron. Bus. 5(5), 57 (2013) Google Scholar
  47. 47.
    Lewis, F.L.: Neural network control of robot manipulators. IEEE Expert 11(3), 64–75 (1996) MathSciNetGoogle Scholar
  48. 48.
    Moberg, S.: Modeling and Control of Flexible Manipulators. Linköping University Electronic Press, Linköping (2010) Google Scholar
  49. 49.
    Spong, M.W., Hutchinson, S., Vidyasagar, M.: Robot Modeling and Control, vol. 3. Wiley, New York (2006) Google Scholar
  50. 50.
    Khalil, H.K.: Nonlinear Systems. Prentice Hall, New York (2002) zbMATHGoogle Scholar
  51. 51.
    Quanser Inc: 2 DOF Serial Flexible Joint Robot, User Manual (2018). Accessed June 2018

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Saeed Zaare
    • 1
  • Mohammad Reza Soltanpour
    • 2
    Email author
  • Mazda Moattari
    • 1
  1. 1.Department of Electrical EngineeringMarvdasht Branch, Islamic Azad UniversityMarvdashtIran
  2. 2.Department of Electrical EngineeringShahid Sattari Aeronautical University of Science and TechnologyTehranIran

Personalised recommendations