Advertisement

A time domain model for the study of high frequency 3D wheelset–track interaction with non-Hertzian contact

  • Wenshan FangEmail author
  • Stefano Bruni
Article
  • 27 Downloads

Abstract

A novel numerical model for train-track interaction is proposed in this paper to deal with wheel–rail interface dynamics in high frequency range. The complete model consists a 3D rotating flexible wheelset model, a 3D track model considering the discrete support of the rail and a non-linear, non-Hertzian model of wheel–rail contact. The wheelset and the track models are both defined using an ‘Arbitrary Lagrangian–Eulerian’ Finite Element approach in combination with modal synthesis. This allows an efficient treatment of the problem, compared to a classical Finite Element approach. The proposed model is suitable to represent train-track interaction effects in a frequency range up to 7 kHz thanks to the detailed description of wheelset and rail deformability. Wheel–rail contact forces and rail vibration under excitation produced by different types of railhead irregularity are investigated in the paper, assessing the effect of different models of wheelset and track flexibility. The results obtained show that the outputs of the model mostly relevant to the investigation of rail corrugation and rolling noise, i.e. wheel–rail contact forces and rail vibration, are highly sensitive to the wheelset and track model adopted.

Keywords

Train-track interaction High frequency Flexible track Flexible wheelset Non-Hertzian contact 

Notes

Acknowledgements

The first author of this work has been financially supported by China Scholarship Council (Grant No. 201407090055).

References

  1. 1.
    Thompson, D.: Railway Noise and Vibration: Mechanisms, Modelling and Means of Control. Elsevier, Amsterdam (2008) Google Scholar
  2. 2.
    Sun, W., et al.: Vertical random vibration analysis of vehicle–track coupled system using Green’s function method. Veh. Syst. Dyn. 52, 362–389 (2014) CrossRefGoogle Scholar
  3. 3.
    Martínez-Casas, J., et al.: Numerical estimation of stresses in railway axles using a train–track interaction model. Int. J. Fatigue 47, 18–30 (2013) CrossRefGoogle Scholar
  4. 4.
    Nielsen, J.C., Johansson, A.: Out-of-round railway wheels-a literature survey. Proc. Inst. Mech. Eng., F J. Rail Rapid Transit 214, 79–91 (2000) CrossRefGoogle Scholar
  5. 5.
    Nielsen, J.C., Ekberg, A., Lundén, R.: Influence of short-pitch wheel–rail corrugation on rolling contact fatigue of railway wheels. Proc. Inst. Mech. Eng., F J. Rail Rapid Transit 219, 177–187 (2005) CrossRefGoogle Scholar
  6. 6.
    Thompson, D., Jones, C.: A review of the modelling of wheel–rail noise generation. J. Sound Vib. 231, 519–536 (2000) CrossRefGoogle Scholar
  7. 7.
    Shabana, A.A., Zaazaa, K.E., Sugiyama, H.: Railroad Vehicle Dynamics: A Computational Approach. CRC Press, Boca Raton (2007) CrossRefzbMATHGoogle Scholar
  8. 8.
    Baeza, L., et al.: High frequency railway vehicle-track dynamics through flexible rotating wheelsets. Veh. Syst. Dyn. 46, 647–659 (2008) CrossRefGoogle Scholar
  9. 9.
    Baeza, L., et al.: Prediction of rail corrugation using a rotating flexible wheelset coupled with a flexible track model and a non-Hertzian/non-steady contact model. J. Sound Vib. 330, 4493–4507 (2011) CrossRefGoogle Scholar
  10. 10.
    Arnold, J., Kaiser, I., Schupp, G.: Simulation of a railway vehicle’s running behaviour: how elastic wheelsets influence the simulation results. Veh. Syst. Dyn. 41, 242–251 (2005) Google Scholar
  11. 11.
    Kaiser, I., Popp, K.: Interaction of elastic wheelsets and elastic rails: modelling and simulation. Veh. Syst. Dyn. 44, 932–939 (2006) CrossRefGoogle Scholar
  12. 12.
    Kaiser, I.: Refining the modelling of vehicle–track interaction. Veh. Syst. Dyn. 50, 229–243 (2012) CrossRefGoogle Scholar
  13. 13.
    Kaiser, I., et al.: The impact of structural flexibilities of wheelsets and rails on the hunting behaviour of a railway vehicle. Veh. Syst. Dyn. (2018).  https://doi.org/10.1080/00423114.2018.1484933 Google Scholar
  14. 14.
    Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press, Cambridge (2013) CrossRefzbMATHGoogle Scholar
  15. 15.
    Brown, M., Shabana, A.A.: Application of multibody methodology to rotating shaft problems. J. Sound Vib. 204, 439–458 (1997) CrossRefGoogle Scholar
  16. 16.
    Di Gialleonardo, E., Braghin, F., Bruni, S.: The influence of track modelling options on the simulation of rail vehicle dynamics. J. Sound Vib. 331, 4246–4258 (2012) CrossRefGoogle Scholar
  17. 17.
    Baeza, L., Ouyang, H.: A railway track dynamics model based on modal substructuring and a cyclic boundary condition. J. Sound Vib. 330, 75–86 (2011) CrossRefGoogle Scholar
  18. 18.
    Knothe, K., Grassie, S.: Modelling of railway track and vehicle/track interaction at high frequencies. Veh. Syst. Dyn. 22, 209–262 (1993) CrossRefGoogle Scholar
  19. 19.
    Chamorro, R., Escalona, J.L., González, M.: An approach for modeling long flexible bodies with application to railroad dynamics. Multibody Syst. Dyn. 26, 135–152 (2011) CrossRefzbMATHGoogle Scholar
  20. 20.
    Ripamonti, F., Ariente, R., Bruni, S.: A time domain model for the study of high frequency train-track interaction. In: 7th International Conference on Railway Bogies and Running Gears, Budapest, Hungary (2007) Google Scholar
  21. 21.
    Martínez-Casas, J., et al.: Improved railway wheelset-track interaction model in the high-frequency domain. J. Comput. Appl. Math. 309, 642–653 (2017) MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Koh, C., Chiew, G., Lim, C.: A numerical method for moving load on continuum. J. Sound Vib. 300, 126–138 (2007) CrossRefGoogle Scholar
  23. 23.
    Hertz, H.: Über die Berührung fester elastischer Körper. (1882) zbMATHGoogle Scholar
  24. 24.
    Kik, W., Piotrowski, J.: A fast, approximate method to calculate normal load at contact between wheel and rail and creep forces during rolling. In: 2nd Mini Conference on Contact Mechanics and Wear of Rail/Wheel System, TU Budapest, Hungary (1996) Google Scholar
  25. 25.
    Piotrowski, J., Chollet, H.: Wheel–rail contact models for vehicle system dynamics including multi-point contact. Veh. Syst. Dyn. 43, 455–483 (2005) CrossRefGoogle Scholar
  26. 26.
    Piotrowski, J., Kik, W.: A simplified model of wheel–rail contact mechanics for non-Hertzian problems and its application in rail vehicle dynamic simulations. Veh. Syst. Dyn. 46, 27–48 (2008) CrossRefGoogle Scholar
  27. 27.
    Kalker, J.: Wheel–rail rolling contact theory. Wear 144, 243–261 (1991) CrossRefGoogle Scholar
  28. 28.
    Ayasse, J., Chollet, H.: Determination of the wheel rail contact patch in semi-Hertzian conditions. Veh. Syst. Dyn. 43, 161–172 (2005) CrossRefGoogle Scholar
  29. 29.
    Telliskivi, T., Olofsson, U.: Contact mechanics analysis of measured wheel–rail profiles using the finite element method. Proc. Inst. Mech. Eng., F J. Rail Rapid Transit 215, 65–72 (2001) CrossRefGoogle Scholar
  30. 30.
    Zhao, X., Li, Z.: The solution of frictional wheel–rail rolling contact with a 3D transient finite element model: validation and error analysis. Wear 271, 444–452 (2011) CrossRefGoogle Scholar
  31. 31.
    Liu, B., Bruni, S., Vollebregt, E.: A non-Hertzian method for solving wheel–rail normal contact problem taking into account the effect of yaw. Veh. Syst. Dyn. 54, 1226–1246 (2016) CrossRefGoogle Scholar
  32. 32.
    Fang, W., Martinez-Casas, J., Bruni, S.: A time-domain model for the study of high-frequency wheelset–track interaction. Urban Rail Transit 3, 203–213 (2017) CrossRefGoogle Scholar
  33. 33.
    Irschik, H., Holl, H.J.: The equations of Lagrange written for a non-material volume. Acta Mech. 153, 231–248 (2002) CrossRefzbMATHGoogle Scholar
  34. 34.
    Knothe, K., Groß-Thebing, A.: Short wavelength rail corrugation and non-steady-state contact mechanics. Veh. Syst. Dyn. 46, 49–66 (2008) CrossRefGoogle Scholar
  35. 35.
    Jin, X., Wen, Z.: Effect of discrete track support by sleepers on rail corrugation at a curved track. J. Sound Vib. 315, 279–300 (2008) CrossRefGoogle Scholar
  36. 36.
    Diana, G., et al.: Experimental and numerical investigation on subway short pitch corrugation. Veh. Syst. Dyn. 29, 234–245 (1998) CrossRefGoogle Scholar
  37. 37.
    Braghin, F., Bruni, S., Diana, G.: Experimental and numerical investigation on the derailment of a railway wheelset with solid axle. Veh. Syst. Dyn. 44, 305–325 (2006) CrossRefGoogle Scholar
  38. 38.
    Kalker, J.: A fast algorithm for the simplified theory of rolling contact. Veh. Syst. Dyn. 11, 1–13 (1982) CrossRefGoogle Scholar
  39. 39.
    Braghin, F., Bruni, S., Lewis, R.: Railway wheel wear. In: Lewis, R., Olofsson, U. (eds.) Wheel/Rail Interface Handbook, pp. 1–59. Woodhead Publishing Ltd., Cambridge (2009) Google Scholar
  40. 40.
    EN ISO: Railway applications-acoustics-measurement of noise emitted by railbound vehicles (2005) Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Dipartimento di MeccanicaPolitecnico di MilanoMilanItaly

Personalised recommendations