Advertisement

Multibody System Dynamics

, Volume 44, Issue 2, pp 135–161 | Cite as

Implicit co-simulation method for constraint coupling with improved stability behavior

  • T. Meyer
  • P. Li
  • D. Lu
  • B. Schweizer
Article
  • 171 Downloads

Abstract

This paper deals with a novel co-simulation approach for coupling mechanical subsystems in time domain. The submodels are assumed to be coupled by algebraic constraint equations. In contrast to well-known coupling techniques from the literature, the here presented index-1 approach uses a special technique for approximating the coupling variables so that the constraint equations together with the hidden constraints on velocity and acceleration level can be enforced simultaneously at the communication time points. The method discussed here uses second- and third-order approximation polynomials. Because of the high approximation order, the numerical errors are very small, and a good convergence behavior is achieved. A stability analysis is carried out, and it is shown that—despite the fact that higher-order approximation polynomials are applied—also a good numerical stability behavior is observed. Different numerical examples are presented, which illustrate the practical application of the approach.

Keywords

Solver coupling Co-simulation Algebraic constraints Parallelization Mechanical systems Multibody systems 

Notes

References

  1. 1.
    Alioli, M., Morandini, M., Masarati, P.: Coupled multibody-fluid dynamics simulation of flapping wings. In: Proceedings of the ASME IDETC/CIE 2013, August 4–7 Portland, Oregon, USA, DETC2013-12198 (2013) Google Scholar
  2. 2.
    Ambrosio, J., Pombo, J., Rauter, F., Pereira, M.: A memory based communication in the co-simulation of multibody and finite element codes for pantograph–catenary interaction simulation. In: Bottasso, C.L. (ed.) Multibody Dynamics: Computational Methods and Applications, pp. 231–252. Springer, Berlin (2009) Google Scholar
  3. 3.
    Ambrosio, J., Pombo, J., Pereira, M., Antunes, P., Mosca, A.: A computational procedure for the dynamic analysis of the catenary–pantograph interaction in high-speed trains. J. Theor. Appl. Mech. 50(3), 681–699 (2012) Google Scholar
  4. 4.
    Arnold, M., Clauss, C., Schierz, T.: Error analysis and error estimates for co-simulation in FMI for model exchange and co-simulation in V2.0. Arch. Mech. Eng. 60(1), 75–94 (2013) CrossRefzbMATHGoogle Scholar
  5. 5.
    Arnold, M.: Stability of sequential modular time integration methods for coupled multibody system models. J. Comput. Nonlinear Dyn. 5, 1–9 (2010) CrossRefGoogle Scholar
  6. 6.
    Busch, M.: Continuous approximation techniques for co-simulation methods: analysis of numerical stability and local error. Z. Angew. Math. Mech. 96(9), 1061–1081 (2016).  https://doi.org/10.1002/zamm.201500196 MathSciNetCrossRefGoogle Scholar
  7. 7.
    Datar, M., Stanciulescu, I., Negrut, D.: A co-simulation environment for high-fidelity virtual prototyping of vehicle systems. Int. J. Veh. Syst. Model. Test. 7, 54–72 (2012) Google Scholar
  8. 8.
    D’Silva, S., Sundaram, P., Ambrosio, J.: Co-Simulation Platform for Diagnostic Development of a Controlled Chassis System. SAE Technical Paper 2006-01-1058 (2006).  https://doi.org/10.4271/2006-01-1058
  9. 9.
    Eberhard, P., Gaugele, T., Heisel, U., Storchak, M.: A discrete element material model used in a co-simulated charpy impact test and for heat transfer. In: Proceedings 1st Int. Conference on Process Machine Interactions, 3–4 September, 2008, Hannover, Germany (2008) Google Scholar
  10. 10.
    Gear, C.W., Wells, D.R.: Multirate linear multistep methods. BIT Numer. Math. 24, 484–502 (1984) MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.: Co-simulation: State of the art. arXiv:1702.00686
  12. 12.
    Gonzalez, F., Gonzalez, M., Cuadrado, J.: Weak coupling of multibody dynamics and block diagram simulation tools. In: Proceedings of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, IDETC/CIE 2009, August 30–September 2, 2009, San Diego, California, USA (2009) Google Scholar
  13. 13.
    Gonzalez, F., Naya, M.A., Luaces, A., Gonzalez, M.: On the effect of multirate co-simulation techniques in the efficiency and accuracy of multibody system dynamics. Multibody Syst. Dyn. 25(4), 461–483 (2011) CrossRefzbMATHGoogle Scholar
  14. 14.
    Gonzalez, F., Gonzalez, M., Mikkola, A.: Efficient coupling of multibody software with numerical computing environments and block diagram simulators. Multibody Syst. Dyn. 24(3), 237–253 (2010).  https://doi.org/10.1007/s11044-010-9199-6 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gu, B., Asada, H.H.: Co-simulation of algebraically coupled dynamic subsystems without disclosure of proprietary subsystem models. J. Dyn. Syst. Meas. Control 126, 1–13 (2004).  https://doi.org/10.1115/1.1648307 CrossRefGoogle Scholar
  16. 16.
    Haug, E.J.: Computer-Aided Kinematics and Dynamics of Mechanical Systems. Allyn & Bacon, Needham Heights (1989) Google Scholar
  17. 17.
    Kübler, R., Schiehlen, W.: Two methods of simulator coupling. Math. Comput. Model. Dyn. Syst. 6, 93–113 (2000) CrossRefzbMATHGoogle Scholar
  18. 18.
    Lacoursière, C.: A parallel block iterative method for interactive contacting rigid multibody simulations on multicore PCs. In: Applied Parallel Computing. State of the Art in Scientific Computing, pp. 956–965 (2007) CrossRefGoogle Scholar
  19. 19.
    Lacoursiere, C., Nordfeldth, F., Linde, M.: A partitioning method for parallelization of large systems in realtime. In: Proceedings of the 3rd Joint International Conference on Multibody System Dynamics and the 7th Asian Conference on Multibody Dynamics, IMSD 2014, ACMD 2014, June 30–July 3, 2014 Bexco, Busan, Korea (2014) Google Scholar
  20. 20.
    Lehnart, A., Fleissner, F., Eberhard, P.: Using SPH in a co-simulation approach to simulate sloshing in tank vehicles. In: Proceedings SPHERIC4, 27–29 May, 2009, Nantes, France (2009) Google Scholar
  21. 21.
    Liao, Y.G., Du, H.I.: Co-simulation of multi-body-based vehicle dynamics and an electric power steering control system. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 215, 141–151 (2001) Google Scholar
  22. 22.
    Malczyk, P., Fraczek, J.: Evaluation of parallel efficiency in modeling of mechanisms using commercial multibody solvers. Arch. Mech. Eng. LVI(3), 237–249 (2009) Google Scholar
  23. 23.
    Maple User Manual: https://www.maplesoft.com
  24. 24.
    Mraz, L., Valasek, M.: Parallelization of multibody system dynamics by additional dynamics. In: Proceedings of the ECCOMAS Thematic Conference Multibody Dynamics, 1–4 July, 2013, Zagreb, Croatia (2013) Google Scholar
  25. 25.
    Naya, M., Cuadrado, J., Dopico, D., Lugris, U.: An efficient unified method for the combined simulation of multibody and hydraulic dynamics: comparison with simplified and co-integration approaches. Arch. Mech. Eng. LVIII, 223–243 (2011) Google Scholar
  26. 26.
    Negrut, N., Melanz, D., Mazhar, H., Lamb, D., Jayakumar, P.: Investigating through simulation the mobility of light tracked vehicles operating on discrete granular terrain. SAE Int. J. Passeng. Cars, Mech. Syst. 6, 369–381 (2013).  https://doi.org/10.4271/2013-01-1191 CrossRefGoogle Scholar
  27. 27.
    Negrut, D., Tasora, A., Mazhar, H., Heyn, T., Hahn, P.: Leveraging parallel computing in multibody dynamics. Multibody Syst. Dyn. 27, 95–117 (2012).  https://doi.org/10.1007/s11044-011-9262-y CrossRefzbMATHGoogle Scholar
  28. 28.
    Negrut, D., Serban, R., Mazhar, H., Heyn, T.: Parallel computing in multibody system dynamics: why, when and how. J. Comput. Nonlinear Dyn. 9(4), 041007 (2014).  https://doi.org/10.1115/1.4027313 CrossRefGoogle Scholar
  29. 29.
    Pombo, J., Ambrosio, J.: Multiple pantograph interaction with catenaries in high-speed trains. J. Comput. Nonlinear Dyn. 7(4), 041008 (2012) CrossRefGoogle Scholar
  30. 30.
    Quaranta, G., Masarati, P., Mantegazza, P.: Multibody analysis of controlled aeroelastic systems on parallel computers. Multibody Syst. Dyn. 8(1), 71–102 (2002).  https://doi.org/10.1023/A:1015894729968 CrossRefzbMATHGoogle Scholar
  31. 31.
    Schneider, F., Burger, M., Arnold, M., Simeon, B.: A new approach for force-displacement co-simulation using kinematic coupling constraints. Z. Angew. Math. Mech. (2017).  https://doi.org/10.1002/zamm.201500129 Google Scholar
  32. 32.
    Schweizer, B., Lu, D.: Predictor/corrector co-simulation approaches for solver coupling with algebraic constraints. Z. Angew. Math. Mech. (2014).  https://doi.org/10.1002/zamm.201300191 zbMATHGoogle Scholar
  33. 33.
    Schweizer, B., Lu, D.: Semi-implicit co-simulation approach for solver coupling. Arch. Appl. Mech. (2014).  https://doi.org/10.1007/s00419-014-0883-5 Google Scholar
  34. 34.
    Schweizer, B., Lu, D.: Stabilized index-2 co-simulation approach for solver coupling with algebraic constraints. Multibody Syst. Dyn. (2014).  https://doi.org/10.1007/s11044-014-9422-y zbMATHGoogle Scholar
  35. 35.
    Schweizer, B., Li, P., Lu, D.: Explicit and implicit co-simulation methods: stability and convergence analysis for different solver coupling approaches. J. Comput. Nonlinear Dyn. (2014).  https://doi.org/10.1115/1.4028503 Google Scholar
  36. 36.
    Schweizer, B., Li, P., Lu, D.: Implicit co-simulation methods: stability and convergence analysis for solver coupling with algebraic constraints. Z. Angew. Math. Mech. (2015).  https://doi.org/10.1002/zamm.201400087 Google Scholar
  37. 37.
    Serban, R., Melanz, D., Li, A., Stanciulescu, I., Jayakumar, P., Negrut, D.: A GPU-based preconditioned Newton–Krylov solver for flexible multibody dynamics. Int. J. Numer. Methods Eng. 102(9), 1585–1604 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Spreng, F., Eberhard, P., Fleissner, F.: An approach for the coupled simulation of machining processes using multibody system and smoothed particle hydrodynamics algorithms. Theor. Appl. Mech. Lett. 3(1), 8–013005 (2013) CrossRefGoogle Scholar
  39. 39.
    Solcia, T., Masarati, P.: Efficient multirate simulation of complex multibody systems based on free software. In: Proceedings of the ASME IDETC/CIE 2011, DETC2011-47306, August 28–31, 2011, Washington, DC, USA (2011) Google Scholar
  40. 40.
    Tomulik, P., Fraczek, J.: Simulation of multibody systems with the use of coupling techniques: a case study. Multibody Syst. Dyn. 25(2), 145–165 (2011) MathSciNetCrossRefGoogle Scholar
  41. 41.
    Tseng, F., Hulbert, G.: Network-distributed multibody dynamics simulation-gluing algorithm. In: Ambrósio, J., Schiehlen, W. (eds.) Advances in Computational Multibody Dynamics, IDMEC/IST, Lisbon, Portugal, pp. 521–540 (1999) Google Scholar
  42. 42.
    Valasek, M., Mraz, L.: Massive Parallelization of Multibody System Simulation. Acta Polytech. 52(6) (2012) Google Scholar
  43. 43.
    Wang, J., Ma, Z.D., Hulbert, G.: A gluing algorithm for distributed simulation of multibody systems. Nonlinear Dyn. 34, 159–188 (2003) CrossRefzbMATHGoogle Scholar
  44. 44.
    Wuensche, S., Clauß, C., Schwarz, P., Winkler, F.: Electro-thermal circuit simulation using simulator coupling. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 5, 277–282 (1997) CrossRefGoogle Scholar
  45. 45.
    Zierath, J., Woernle, C.: Contact modelling in multibody systems by means of a boundary element co-simulation and a Dirichlet-to-Neumann algorithm. In: Oñate, E. (ed.) Computational Methods in Applied Sciences. Springer, Berlin (2012) Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Institute of Applied DynamicsTechnical University DarmstadtDarmstadtGermany

Personalised recommendations