Advertisement

Multibody System Dynamics

, Volume 44, Issue 3, pp 293–311 | Cite as

Combined semi-recursive formulation and lumped fluid method for monolithic simulation of multibody and hydraulic dynamics

  • Jarkko Rahikainen
  • Aki Mikkola
  • Jussi Sopanen
  • Johannes Gerstmayr
Article

Abstract

The use of multibody simulation tools allows complex machinery to be described in detail while still providing a solution for the system in real time. As mechanical components are often accompanied by other dynamical systems, such as hydraulics, description of each subsystem is required to fully describe the dynamics of complex machinery. A potential candidate for solving the multiphysics problem at hand is known as the unified or monolithic approach. This strongly coupled approach yields a single set of equations to be integrated and, compared to co-simulation and co-integration approaches, a relatively simple integration procedure. In this paper, a monolithic formulation for a combined simulation of multibody and hydraulic dynamics using an efficient semi-recursive formulation and the lumped fluid method is introduced. The results indicate that the proposed method shows potential for efficient simulation of combined multibody and hydraulic problems. The robustness of the multibody method is maintained when combined with the hydraulic dynamics description and higher efficiency is observed than with an equivalent global approach.

Keywords

Multibody system dynamics Hydraulic modelling Real-time simulation Coupled simulation 

Notes

Acknowledgements

The authors acknowledge support of this project by SIM Platform (www.lut.fi/sim) at Lappeenranta University of Technology.

References

  1. 1.
    Baharudin, M.E., Rouvinen, A., Korkealaakso, P., Mikkola, A.: Real-time multibody application for tree harvester truck simulator. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 228(2), 182–198 (2014) Google Scholar
  2. 2.
    Bayo, E., Ledesma, R.: Augmented Lagrangian and mass-orthogonal projection methods for constrained multibody dynamics. Nonlinear Dyn. 9(1–2), 113–130 (1996) MathSciNetCrossRefGoogle Scholar
  3. 3.
    Brenan, K.E., Campbell, S.L., Petzold, L.R.: The Numerical Solution of Initial Value Problems in Differential-Algebraic Equations. Elsevier, Amsterdam (1989) zbMATHGoogle Scholar
  4. 4.
    Callejo, A., Narayanan, S., Javier García de Jalón, J., Norris, B.: Performance of automatic differentiation tools in the dynamic simulation of multibody systems. Adv. Eng. Softw. 73, 35–44 (2014).  https://doi.org/10.1016/j.advengsoft.2014.03.002 CrossRefGoogle Scholar
  5. 5.
    Cuadrado, J., Cardenal, J., Bayo, E.: Modeling and solution methods for efficient real-time simulation of multibody dynamics. Multibody Syst. Dyn. 1(3), 259–280 (1997) MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cuadrado, J., Cardenal, J., Morer, P., Bayo, E.: Intelligent simulation of multibody dynamics: space-state and descriptor methods in sequential and parallel computing environments. Multibody Syst. Dyn. 4(1), 55–73 (2000) CrossRefzbMATHGoogle Scholar
  7. 7.
    Cuadrado, J., Dopico, D., Gonzalez, M., Naya, M.: A combined penalty and recursive real-time formulation for multibody dynamics. J. Mech. Des. 126(4), 602–608 (2004).  https://doi.org/10.1115/1.1758257 CrossRefGoogle Scholar
  8. 8.
    Docquier, N., Poncelet, A., Delannoy, M., Fisette, P.: Multiphysics modelling of multibody systems: application to car semi-active suspensions. Veh. Syst. Dyn. 48(12), 1439–1460 (2010).  https://doi.org/10.1080/00423110903509335 CrossRefGoogle Scholar
  9. 9.
    Dopico, D., Lugris, U., Gonzalez, M., Cuadrado, J.: IRK vs structural integrators for real-time applications in MBS. J. Mech. Sci. Technol. 19(1), 388–394 (2005).  https://doi.org/10.1007/BF02916159 CrossRefGoogle Scholar
  10. 10.
    Dopico, D., Lugris, U., Gonzalez, M., Cuadrado, J.: Two implementations of irk integrators for real-time multibody dynamics. Int. J. Numer. Methods Eng. 65(12), 2091–2111 (2006).  https://doi.org/10.1002/nme.1544 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Featherstone, R.: Robot Dynamics Algorithms. Kluwer Academic, Boston (1987) CrossRefGoogle Scholar
  12. 12.
    García De Jalón, J., Álvarez, E., De Ribera, F., Rodríguez, I., Funes, F.: A fast and simple semi-recursive formulation for multi-rigid-body systems. Comput. Methods Appl. Sci. 2, 1–23 (2005) zbMATHGoogle Scholar
  13. 13.
    Gear, C.W., Wells, D.R.: Multirate linear multistep methods. BIT Numer. Math. 24(4), 484–502 (1984).  https://doi.org/10.1007/BF01934907 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    González, F., González, M., Mikkola, A.: Efficient coupling of multibody software with numerical computing environments and block diagram simulators. Multibody Syst. Dyn. 24(3), 237–253 (2010).  https://doi.org/10.1007/s11044-010-9199-6 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Handroos, H., Vilenius, M.: Flexible semi-empirical models for hydraulic flow control valves. J. Mech. Transm. Autom. Des. 113(3), 232–238 (1991) CrossRefGoogle Scholar
  16. 16.
    Hidalgo, A., García De Jalón, J.: Real-time dynamic simulations of large road vehicles using dense, sparse, and parallelization techniques. J. Comput. Nonlinear Dyn. 10(3), 031005 (2015).  https://doi.org/10.1115/1.4028794 CrossRefGoogle Scholar
  17. 17.
    de Jalón, J.G., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge. Springer, New York (1994) CrossRefGoogle Scholar
  18. 18.
    de Jalón, J.G., Hidalgo, A., Callejo, A.: Improved semi-recursive formulation for the dynamic simulation of multibody systems (2011) Google Scholar
  19. 19.
    Lugrís, U., Naya, M., González, F., Cuadrado, J.: Performance and application criteria of two fast formulations for flexible multibody dynamics. Mech. Based Des. Struct. Mach. 35(4), 381–404 (2007).  https://doi.org/10.1080/15397730701617947 CrossRefGoogle Scholar
  20. 20.
    Naya, M., Cuadrado, J., Dopico, D., Lugris, U.: An efficient unified method for the combined simulation of multibody and hydraulic dynamics: comparison with simplified and co-integration approaches. Arch. Mech. Eng. 58(2), 223–243 (2011).  https://doi.org/10.2478/v10180-011-0016-4 CrossRefGoogle Scholar
  21. 21.
    Nokka, J., Montonen, J.H., Bin Baharudin, E., Immonen, P., Rouvinen, A., Laurila, L., Lindh, T., Mikkola, A., Sopanen, J., Pyrhönen, J.: Multi-body simulation based development environment for hybrid working machines. Int. Rev. Model. Simul. 8(4), 466–476 (2015) Google Scholar
  22. 22.
    Rodríguez, J.I., Jiménez, J.M., Funes, F.J., García de Jalón, J.: Recursive and residual algorithms for the efficient numerical integration of multi-body systems. Multibody Syst. Dyn. 11(4), 295–320 (2004).  https://doi.org/10.1023/B:MUBO.0000040798.77064.bc MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Samin, J.C., Brüls, O., Collard, J.F., Sass, L., Fisette, P.: Multiphysics modeling and optimization of mechatronic multibody systems. Multibody Syst. Dyn. 18(3), 345–373 (2007).  https://doi.org/10.1007/s11044-007-9076-0 CrossRefzbMATHGoogle Scholar
  24. 24.
    Shabana, A.A.: Computational Dynamics. Wiley, New York (2009) zbMATHGoogle Scholar
  25. 25.
    Wanner, G., Hairer, E.: Solving Ordinary Differential Equations II. Springer, Berlin (1991) zbMATHGoogle Scholar
  26. 26.
    Watton, J.: Fluid Power Systems: Modeling, Simulation, Analog and Microcomputer Control. Prentice Hall, New York (1989) Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringLappeenranta University of TechnologyLappeenrantaFinland
  2. 2.Institute of MechatronicsLeopold-Franzens-Universität InnsbruckInnsbruckAustria

Personalised recommendations