Multibody System Dynamics

, Volume 43, Issue 4, pp 387–405 | Cite as

Symbolic integration of multibody system dynamics with the finite element method

  • Yiteng LiangEmail author
  • John McPhee


With the widespread use of computer-aided engineering (CAE) to solve computational mechanics problems, engineering design has become more accurate and efficient. The integration of the finite element method (FEM) and flexible multibody dynamics (FMD) is a typical application of computational mechanics. It constitutes an important contribution to engineering development, but its potential is restrained by numerical computation. Computational time is a critical factor that influences the efficiency and cost of design and analysis. The advent of symbolic computation enables faster simulation code, but the symbolic integration of FEM and FMD is at the initial stages. A general symbolic integration procedure is presented in this paper. The performance of the symbolic model is compared with models from the literature and numerically-based commercial software.


Finite element method Multibody system dynamics Symbolic computation Floating frame of reference 3D Rayleigh beam Geometrical stiffening 



  1. 1.
    Astley, R.J.: Finite Elements in Solids and Structures. An Introduction. Springer, Berlin (1992) Google Scholar
  2. 2.
    Bakr, E., Shabana, A.A.: Geometrically nonlinear analysis of multibody systems. Comput. Struct. 23(6), 739–751 (1986) CrossRefzbMATHGoogle Scholar
  3. 3.
    Bauchau, O.A., Betsch, P., Cardona, A., Gerstmayr, J., Jonker, B., Masarati, P., Sonneville, V.: Validation of flexible multibody dynamics beam formulations using benchmark problems. Multibody Syst. Dyn. 37(1), 29–48 (2016) MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bauchau, O.A., Han, S., Mikkola, A., Matikainen, M.K.: Comparison of the absolute nodal coordinate and geometrically exact formulations for beams. Multibody Syst. Dyn. 32(1), 67–85 (2014) MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bauchau, O.A., Han, S., Mikkola, A., Matikainen, M.K., Gruber, P.: Experimental validation of flexible multibody dynamics beam formulations. Multibody Syst. Dyn. 34(4), 373–389 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Berzeri, M., Campanelli, M., Shabana, A.A.: Definition of the elastic forces in the finite-element absolute nodal coordinate formulation and the floating frame of reference formulation. Multibody Syst. Dyn. 5(1), 21–54 (2001) CrossRefzbMATHGoogle Scholar
  7. 7.
    Clough, R.W., Penzien, J., Griffin, D.: Dynamics of structures. J. Appl. Mech. 44, 366 (1977) CrossRefGoogle Scholar
  8. 8.
    Craig, R.R.: Coupling of substructures for dynamic analyses: an overview. In: Proceedings of AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, pp. 1573–1584 (2000) Google Scholar
  9. 9.
    Dibold, M., Gerstmayr, J., Irschik, H.: A detailed comparison of the absolute nodal coordinate and the floating frame of reference formulation in deformable multibody systems. J. Comput. Nonlinear Dyn. 4(2), 021,006 (2009) CrossRefGoogle Scholar
  10. 10.
    Escalona, J., Hussien, H., Shabana, A.: Application of the absolute nodal coordinate formulation to multibody system dynamics. Tech. Rep. No. MBS97-1-UIC, University of Illinois at Chicago Circle Department of Mechanical Engineering (1997) Google Scholar
  11. 11.
    Ferretti, G., Schiavo, F., Vigano, L.: Object-oriented modelling and simulation of flexible multibody thin beams in modelica with the finite element method. In: 4th Modelica Conference. Hamburg–Harburg, Germany (2005) Google Scholar
  12. 12.
    Finlayson, B.A.: The Method of Weighted Residuals and Variational Principles, vol. 73. SIAM, Philadelphia (2013) CrossRefzbMATHGoogle Scholar
  13. 13.
    Kane, T., Ryan, R., Banerjee, A.: Dynamics of a cantilever beam attached to a moving base. J. Guid. Control Dyn. 10(2), 139–151 (1987) CrossRefGoogle Scholar
  14. 14.
    Liang, Y.: Symbolic integration of multibody system dynamics with finite element method. UWSpace (2017).
  15. 15.
    Liu, J., Hong, J.: Geometric stiffening effect on rigid-flexible coupling dynamics of an elastic beam. J. Sound Vib. 278(4), 1147–1162 (2004) CrossRefGoogle Scholar
  16. 16.
    Lugrís, U., Naya, M.A., Pérez, J.A., Cuadrado, J.: Implementation and efficiency of two geometric stiffening approaches. Multibody Syst. Dyn. 20(2), 147–161 (2008) MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Mayo, J., Dominguez, J.: A finite element geometrically nonlinear dynamic formulation of flexible multibody systems using a new displacements representation. J. Vib. Acoust. 119(4), 573–581 (1997) CrossRefGoogle Scholar
  18. 18.
    Mayo, J., Dominguez, J., Shabana, A.A.: Geometrically nonlinear formulations of beams in flexible multibody dynamics. J. Vib. Acoust. 117(4), 501–509 (1995) CrossRefGoogle Scholar
  19. 19.
    McPhee, J.: Automatic generation of motion equations for planar mechanical systems using the new set of “branch coordinates”. Mech. Mach. Theory 33(6), 805–823 (1998) MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    McPhee, J., Schmitke, C., Redmond, S.: Dynamic modelling of mechatronic multibody systems with symbolic computing and linear graph theory. Math. Comput. Model. 10(1), 1–23 (2004) zbMATHGoogle Scholar
  21. 21.
    Piedbœuf, J.C., Moore, B.: On the foreshortening effects of a rotating flexible beam using different modeling methods. Mech. Struct. Mach. 30(1), 83–102 (2002). CrossRefGoogle Scholar
  22. 22.
    Samin, J.C., Fisette, P.: Symbolic Modeling of Multibody Systems, vol. 112. Springer, Berlin (2013) zbMATHGoogle Scholar
  23. 23.
    Shabana, A.A.: Flexible multibody dynamics: review of past and recent developments. Multibody Syst. Dyn. 1(2), 189–222 (1997) MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Shabana, A.A.: Dynamics of Multibody Systems. Cambridge University Press, Cambridge (2013) CrossRefzbMATHGoogle Scholar
  25. 25.
    Shabana, A.A., Schwertassek, R.: Equivalence of the floating frame of reference approach and finite element formulations. Int. J. Non-Linear Mech. 33(3), 417–432 (1998) CrossRefzbMATHGoogle Scholar
  26. 26.
    Shabana, A.A., Yakoub, R.Y.: Three dimensional absolute nodal coordinate formulation for beam elements: theory. J. Mech. Des. 123(4), 606–613 (2001) CrossRefGoogle Scholar
  27. 27.
    Shames, I.H.: Energy and Finite Element Methods in Structural Mechanics. CRC Press, Boca Raton (1985) zbMATHGoogle Scholar
  28. 28.
    Shi, P., McPhee, J.: Dynamics of flexible multibody systems using virtual work and linear graph theory. Multibody Syst. Dyn. 4(4), 355–381 (2000) CrossRefzbMATHGoogle Scholar
  29. 29.
    Shi, P., McPhee, J., Heppler, G.: A deformation field for Euler–Bernoulli beams with applications to flexible multibody dynamics. Multibody Syst. Dyn. 5(1), 79–104 (2001) CrossRefzbMATHGoogle Scholar
  30. 30.
    Tiller, M.: Introduction to Physical Modeling with Modelica, vol. 615. Springer, Berlin (2012) Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.WaterlooCanada

Personalised recommendations