Advertisement

Multibody System Dynamics

, Volume 45, Issue 1, pp 7–35 | Cite as

A robust two-stage active disturbance rejection control for the stabilization of a riderless bicycle

  • Mauro Baquero-Suárez
  • John Cortés-RomeroEmail author
  • Jaime Arcos-Legarda
  • Horacio Coral-Enriquez
Article

Abstract

In this work we propose a two-stage observer-based feedback control approach to automatically stabilizing a riderless bicycle in its upright position when moving forward at a constant speed. Our strategy uses a modern control approach called Active Disturbance Rejection Control (ADRC), based on Generalized Proportional Integral (GPI) extended observers, to estimate a unified signal that groups all the discrepancies between an adopted linear model and the actual behavior of the plant. These estimations are used in the feedback controller as an additive, close cancellation and terms devising proper output feedback control laws that linearly regulate the lean angle with respect to its upright position. From a control-design perspective, the bicycle is a perturbed, uncertain system with an unstable and non-linear behavior that is strongly forward speed dependent. The ADRC scheme allows one to solve this problem easily by using a control strategy based on an acceptable mathematical model derived from lumped-parameter analysis, and its effectiveness has been validated by the successful results from real implementation experiments on an instrumented bicycle prototype. A detailed description of all the stages of the mechatronics process design is included for a proper reference.

Keywords

Autonomous bicycle Non-linear systems Active disturbance rejection control Generalized proportional integral control Disturbance observers Bicycle robot 

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Herlihy, D.V.: Bicycle: The History, Chap. 1–9. Yale University Press, New Haven (2004) Google Scholar
  2. 2.
    Hamer, M.: Brimstone and bicycles. New Sci. 185, 44–49 (2005) Google Scholar
  3. 3.
    Sharp, A.: Bicycles and Tricycles: A Classic Treatise on Their Design and Construction, Chap. 14. Dover, New York (2011) Google Scholar
  4. 4.
    Kooijman, J.D.G., Meijaard, J.P., Papadopoulos, J.M., Ruina, A., Schwab, A.L.: A bicycle can be self-stable without gyroscopic or caster effects. Science 332(6027), 339–342 (2011) MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Limebeer, D.J.N., Sharp, R.S.: Bicycles, motorcycles, and models. IEEE Control Syst. 26(5), 34–61 (2006) CrossRefGoogle Scholar
  6. 6.
    Åström, K.J., Klein, R.E., Lennartsson, A.: Bicycle dynamics and control: adapted bicycles for education and research. IEEE Control Syst. 25(4), 26–47 (2005) MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Schwab, A.L., Meijaard, J.P.: A review on bicycle dynamics and rider control. Veh. Syst. Dyn. 51(7), 1059–1090 (2013) CrossRefGoogle Scholar
  8. 8.
    Meijaard, J.P., Papadopoulos, J.M., Ruina, A., Schwab, A.L.: Linearized dynamics equations for the balance and steer of a bicycle: a benchmark and review. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 463(2084), 1955–1982 (2007) MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Klein, R.E., Lieberman, L., DiRocco, P., McHugh, E.: Adapted bikes deliver new independence: learning to ride a bike is a rite of passage for many children. Except. Parent 32(10), 64–66 (2002) Google Scholar
  10. 10.
    Klein, R.E., McHugh, E., Harrington, S.L., Davis, T., Lieberman, L.: Adapted bicycles for teaching riding skills. Counc. Except. Child. 37(6), 50–56 (2005) CrossRefGoogle Scholar
  11. 11.
    Chen, C.-K., Dao, T.-K.: A study of bicycle dynamics via system identification. In: International Symposium on Computer, Communication, Control and Automation (3CA), vol. 2, pp. 204–207 (2010) Google Scholar
  12. 12.
    Sharp, R.S.: Optimal stabilization and path-following controls for a bicycle. Proc. Inst. Mech. Eng., Part C, J. Mech. Eng. Sci. 221(4), 415–427 (2007) MathSciNetCrossRefGoogle Scholar
  13. 13.
    Schwab, A.L., Kooijman, J.D.G., Meijaard, J.P.: Some recent developments in bicycle dynamics and control. In: Fourth European Conference on Structural Control (4ECSC), pp. 695–702. Institute of Problems in Mechanical Engineering, Russian Academy of Sciences, Saint-Petersburg (2008) Google Scholar
  14. 14.
    Ai-Buraiki, O., Thabit, M.B.: Model predictive control design approach for autonomous bicycle kinematics stabilization. In: 22nd Mediterranean Conference of Control and Automation (MED), pp. 380–383 (2014) Google Scholar
  15. 15.
    Brizuela, J., Astorga, C., Zavala, A., Pattalochi, L., Canales, F.: State and actuator fault estimation observer design integrated in a riderless bicycle stabilization system. ISA Trans. 61, 199–210 (2016) CrossRefGoogle Scholar
  16. 16.
    Brizuela-Mendoza, J.A., Astorga-Zaragoza, C.M., Zavala-Río, A., Canales-Abarca, F., Reyes-Reyes, J.: Fault tolerant control for polynomial linear parameter varying (LPV) systems applied to the stabilization of a riderless bicycle. In: Control Conference (ECC), 2013 European, pp. 2957–2962 (2013) CrossRefGoogle Scholar
  17. 17.
    Varrier, S., Koenig, D., Martinez, J.J.: Integrated fault estimation and fault tolerant control design for LPV systems. IFAC Proc. Vol. 46(2), 689–694 (2013) CrossRefGoogle Scholar
  18. 18.
    Getz, N.: Control of balance for a nonlinear nonholonomic non-minimum phase model of a bicycle. In: American Control Conference, vol. 1, pp. 148–151. Institute of Problems in Mechanical Engineering, Russian Academy of Sciences, Saint-Petersburg (1994) Google Scholar
  19. 19.
    Guo, L., Liao, Q., Wei, S.: Nonlinear stabilization of bicycle robot steering control system. In: International Conference on Mechatronics and Automation, pp. 3185–3189 (2009) Google Scholar
  20. 20.
    Guo, L., Liao, Q.-Z., Wei, S.-M.: Dynamic modeling of bicycle robot and nonlinear control based on feedback linearization of MIMO systems. Beijing Youdian Daxue Xuebao/J. Beijing Univ. Posts Telecommun. 30(1), 80–84 (2007) Google Scholar
  21. 21.
    Tanaka, Y., Murakami, T.: Self sustaining bicycle robot with steering controller. In: The 8th IEEE International Workshop on Advanced Motion Control, pp. 193–197 (2004) Google Scholar
  22. 22.
    Defoort, M., Murakami, T.: Second order sliding mode control with disturbance observer for bicycle stabilization. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2822–2827 (2008) Google Scholar
  23. 23.
    Shafiekhani, A., Mahjoob, M.J., Akraminia, M.: Design and implementation of an adaptive critic-based neuro-fuzzy controller on an unmanned bicycle. Mechatronics 28(Supplement C), 115–123 (2015) CrossRefGoogle Scholar
  24. 24.
    Cerone, V., Andreo, D., Larsson, M., Regruto, D.: Stabilization of a riderless bicycle, a linear-parameter-varying approach [applications of control]. IEEE Control Syst. 30(5), 23–32 (2010) MathSciNetCrossRefGoogle Scholar
  25. 25.
    Gao, Z., Huang, Y., Han, J.: An alternative paradigm for control system design. In: 40th IEEE Conference on Decision and Control, vol. 5, pp. 4578–4585 (2001) Google Scholar
  26. 26.
    Gao, Z.: Active disturbance rejection control: a paradigm shift in feedback control system design. In: Proceedings of the 2006 American Control Conference, 7 pp. (2006) Google Scholar
  27. 27.
    Han, J.: From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56(3), 900–906 (2009) CrossRefGoogle Scholar
  28. 28.
    Sira-Ramírez, H., Luviano-Juárez, A., Ramírez-Neria, M., Zurita-Bustamante, E.W.: Active Disturbance Rejection Control of Dynamic Systems: A Flatness Based Approach. Butterworth, Stoneham (2017) Google Scholar
  29. 29.
    Sira-Ramírez, H., Luviano-Juárez, A., Cortés-Romero, J.: Control Lineal Robusto de Sistemas no Lineales Diferencialmente Planos. Rev. Iberoam. Autom. Inform. Ind. RIAI 8(1), 14–28 (2011) Google Scholar
  30. 30.
    Sira-Ramírez, H., Luviano-Juárez, A., Cortés-Romero, J.: Robust input output sliding mode control of the buck converter. Control Eng. Pract. 21(5), 671–678 (2013) CrossRefGoogle Scholar
  31. 31.
    Ramírez-Neria, M., Sira-Ramírez, H., Garrido-Moctezuma, R., Luviano-Juárez, A.: Linear active disturbance rejection control of underactuated systems: the case of the Furuta pendulum. ISA Trans. 53(4), 920–928 (2014). Disturbance Estimation and Mitigation CrossRefGoogle Scholar
  32. 32.
    Sira-Ramírez, H., Gonzalez-Montanez, F., Cortés-Romero, J.A., Luviano-Juárez, A.: A robust linear field-oriented voltage control for the induction motor: experimental results. IEEE Trans. Ind. Electron. 60(8), 3025–3033 (2013) CrossRefGoogle Scholar
  33. 33.
    Coral-Enriquez, H., Cortés-Romero, J.: Spatial-domain active disturbance rejection control for load mitigation in horizontal-axis wind turbines. In: 2016 IEEE Conference on Control Applications (CCA), pp. 575–580 (2016) CrossRefGoogle Scholar
  34. 34.
    Ramírez-Neria, M., Sira-Ramírez, H., Luviano-Juárez, A., Rodríguez-Ángeles, A.: Active disturbance rejection control applied to a delta parallel robot in trajectory tracking tasks. Asian J. Control 17(2), 636–647 (2015) MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Ramos, G.A., Cortés-Romero, J., Coral-Enriquez, H.: Spatial observer-based repetitive controller: an active disturbance rejection approach. Control Eng. Pract. 42(September 2015), 1–11 (2015) CrossRefGoogle Scholar
  36. 36.
    Martínez-Fonseca, N., Ángel Castañeda, L., Uranga, A., Luviano-Juárez, A., Chairez, I.: Robust disturbance rejection control of a biped robotic system using high-order extended state observer. ISA Trans. 62(Supplement C), 276–286 (2016) CrossRefGoogle Scholar
  37. 37.
    Cortés Romero, J.A., Ramos, GA., Coral Enriquez, H.: Generalized proportional integral control for periodic signals under active disturbance rejection approach. ISA Trans. 53(6), 1901–1909 (2014) CrossRefGoogle Scholar
  38. 38.
    Cortés Romero, J.A., Luviano Juárez, A., Álvarez Salas, R., Sira Ramírez, H.: Fast identification and control of an uncertain brushless DC motor using algebraic methods. In: 12th International Power Electronics Congress (CIEP), pp. 9–14 (2010) CrossRefGoogle Scholar
  39. 39.
    Li, J., Xia, Y., Qi, X., Gao, Z.: On the necessity, scheme, and basis of the linear-nonlinear switching in active disturbance rejection control. IEEE Trans. Ind. Electron. 64(2), 1425–1435 (2017) CrossRefGoogle Scholar
  40. 40.
    Whipple, F.J.W.: The stability of the motion of a bicycle. Q. J. Pure Appl. Math. 30(120), 312–348 (1899) zbMATHGoogle Scholar
  41. 41.
    Papadopoulos, J.M.: Bicycle steering dynamics and self-stability: a summary report on work in progress. Cornell Bicycle Research Project, Cornell University, Ithaca, NY (1987) Google Scholar
  42. 42.
    Pennestrì, E., Rossi, V., Salvini, P., Valentini, P.P.: Review and comparison of dry friction force models. Nonlinear Dyn. 83(4), 1785–1801 (2016) CrossRefzbMATHGoogle Scholar
  43. 43.
    Baquero-Suárez, M., Cortes-Romero, J., Arcos-Legarda, J., Coral-Enriquez, H.: Estabilización Automática de una Bicicleta sin Conductor mediante el Enfoque de Control por Rechazo Activo de Perturbaciones. Rev. Iberoam. Autom. Inform. Ind. 15(1), 86–100 (2017) CrossRefGoogle Scholar
  44. 44.
    Madoński, R., Herman, P.: Survey on methods of increasing the efficiency of extended state disturbance observers. ISA Trans. 56(1), 18–27 (2015) CrossRefGoogle Scholar
  45. 45.
    Canudas de Wit, C., Tsiotras, P., Velenis, E., Basset, M., Gissinger, G.: Dynamic friction models for road/tire longitudinal interaction. Veh. Syst. Dyn. 39(3), 189–226 (2003) CrossRefGoogle Scholar
  46. 46.
    Canudas de Wit, C., Tsiotras, P.: Dynamic tire friction models for vehicle traction control. In: Proceedings of the 38th IEEE Conference on Decision and Control, vol. 4, pp. 3746–3751 (1999) Google Scholar
  47. 47.
    Åström, K.J., Hägglund, T.: PID Controllers: Theory, Design, and Tuning, Chap. 3, 2nd edn., pp. 80–92. Instrument Society of America (ISA), USA (1995) Google Scholar
  48. 48.
    Schwab, A.L., Meijaard, J.P., Kooijman, J.D.G.: Lateral dynamics of a bicycle with a passive rider model: stability and controllability. Veh. Syst. Dyn. 50(8), 1209–1224 (2012) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Mauro Baquero-Suárez
    • 1
    • 2
  • John Cortés-Romero
    • 1
    Email author
  • Jaime Arcos-Legarda
    • 1
  • Horacio Coral-Enriquez
    • 1
    • 2
  1. 1.Department of Electrical EngineeringNational University of ColombiaBogotá D.C.Colombia
  2. 2.Engineering FacultyUniversity of San BuenaventuraBogotá D.C.Colombia

Personalised recommendations