Advertisement

Multibody System Dynamics

, Volume 45, Issue 2, pp 245–272 | Cite as

A co-simulation approach to the wheel–rail contact with flexible railway track

  • P. Antunes
  • H. Magalhães
  • J. AmbrósioEmail author
  • J. Pombo
  • J. Costa
Article
  • 387 Downloads

Abstract

The standard approach to railway vehicle dynamic analysis includes running the vehicle multibody models in rigid railway tracks. The wheel–rail contact, independently of the rolling contact model used, is either handled online or via lookup tables. This traditional approach disregards the coupling effects between the railway vehicle dynamics and the railway track flexibility. In this work the assumption of rigidity of the railway track is relaxed and a finite element model of the complete track, i.e. rails, pads, sleepers, ballast and infrastructure, is used to represent the track geometry and flexibility. A rail–wheel contact model that evaluates the contact conditions and forces is used online. The dynamics of the railway vehicle is described using a multibody methodology while the track structure is described using a finite element approach. Due to the fact that not only the multibody and the finite element dynamic analysis use different integration algorithms but also because the vehicle and track models are simulated in different, codes a co-simulation procedure is proposed and demonstrated to address the coupled dynamics of the system. This approach allows us to analyze the vehicle dynamics in a flexible track with a general geometry modeled with finite elements, i.e. including curvature, cant, vertical slopes and irregularities, which is another novel contribution. The methodology proposed in this work is demonstrated in an application, in which the railway vehicle–track interaction shows the influence of the vehicle dynamics on the track dynamics and vice versa.

Keywords

Rolling contact Multibody vehicle model Flexible track Railway dynamics Online contact detection 

Notes

References

  1. 1.
    ERRAC: Strategic Rail Research Agenda 2020. Brussels, Belgium (2007) Google Scholar
  2. 2.
    OECD: Strategic Transport Infrastructure Needs to 2030. OECD Publishing, Paris (2012) CrossRefGoogle Scholar
  3. 3.
    Felippa, C.A., Park, K.C.C., Farhat, C.: Partitioned analysis of coupled mechanical systems. Comput. Methods Appl. Mech. Eng. 190, 3247–3270 (2001).  https://doi.org/10.1016/S0045-7825(00)00391-1 CrossRefzbMATHGoogle Scholar
  4. 4.
    Hulbert, G., Ma, Z.-D., Wang, J.: Gluing for dynamic simulation of distributed mechanical systems. In: Ambrósio, J. (ed.) Advances on Computational Multibody Systems, pp. 69–94. Springer, Dordrecht (2005) CrossRefGoogle Scholar
  5. 5.
    Kubler, R., Schiehlen, W.: Modular simulation in multibody system dynamics. Multibody Syst. Dyn. 4, 107–127 (2000) CrossRefzbMATHGoogle Scholar
  6. 6.
    Dietz, S., Hippmann, G., Schupp, G.: Interaction of vehicles and flexible tracks by co-simulation of multibody vehicle systems and finite element track models. Veh. Syst. Dyn. 37, 372–384 (2002).  https://doi.org/10.1080/00423114.2002.11666247 CrossRefGoogle Scholar
  7. 7.
    Heckmann, A., Arnold, M., Vaculín, O.: A modal multifield approach for an extended flexible body description in multibody dynamics. Multibody Syst. Dyn. 13, 299–322 (2005).  https://doi.org/10.1007/s11044-005-4085-3 CrossRefzbMATHGoogle Scholar
  8. 8.
    Liu, F., Cai, J., Zhu, Y., Tsai, H.M., Wong, A.S.F.: Calculation of wing flutter by a coupled fluid-structure method. J. Aircr. 38, 334–342 (2001).  https://doi.org/10.2514/2.2766 CrossRefGoogle Scholar
  9. 9.
    Bathe, K.J., Zhang, H.: Finite element developments for general fluid flows with structural interactions. Int. J. Numer. Methods Eng. 60, 213–232 (2004).  https://doi.org/10.1002/nme.959 CrossRefzbMATHGoogle Scholar
  10. 10.
    Naya, M., Cuadrado, J., Dopico, D., Lugris, U.: An efficient unified method for the combined simulation of multibody and hydraulic dynamics: comparison with simplified and co-integration approaches. Arch. Mech. Eng. 58, 223–243 (2011).  https://doi.org/10.2478/v10180-011-0016-4 CrossRefGoogle Scholar
  11. 11.
    Busch, M., Schweizer, B.: Coupled simulation of multibody and finite element systems: an efficient and robust semi-implicit coupling approach. Arch. Appl. Mech. 82, 723–741 (2012).  https://doi.org/10.1007/s00419-011-0586-0 CrossRefzbMATHGoogle Scholar
  12. 12.
    Carstens, V., Kemme, R., Schmitt, S.: Coupled simulation of flow-structure interaction in turbomachinery. Aerosp. Sci. Technol. 7, 298–306 (2003).  https://doi.org/10.1016/S1270-9638(03)00016-6 CrossRefzbMATHGoogle Scholar
  13. 13.
    Spreng, F., Eberhard, P., Fleissner, F.: An approach for the coupled simulation of machining processes using multibody system and smoothed particle hydrodynamics algorithms. Theor. Appl. Mech. Lett. 3, 013005 (2013).  https://doi.org/10.1063/2.1301305 CrossRefGoogle Scholar
  14. 14.
    Anderson, K.S., Duan, S.: A hybrid parallelizable low-order algorithm for dynamics of multi-rigid-body systems: Part I, chain systems. Math. Comput. Model. 30, 193–215 (1999).  https://doi.org/10.1016/S0895-7177(99)00190-9 CrossRefzbMATHGoogle Scholar
  15. 15.
    Wang, J., Ma, Z., Hulbert, G.M.: A gluing algorithm for distributed simulation of multibody systems. Nonlinear Dyn. 34, 159–188 (2003).  https://doi.org/10.1023/B:NODY.0000014558.70434.b0 CrossRefzbMATHGoogle Scholar
  16. 16.
    Verhoef, M., Visser, P., Hooman, J., Broenink, J.: Co-simulation of distributed embedded real-time control systems. In: Davies, J., Gibbons, J. (eds.) Integrated Formal Methods: 6th International Conference, IFM 2007. Proceedings, Oxford, UK, July 2–5, 2007, pp. 639–658. Springer, Berlin (2007) CrossRefGoogle Scholar
  17. 17.
    Spiryagin, M., Simson, S., Cole, C., Persson, I.: Co-simulation of a mechatronic system using Gensys and Simulink. Veh. Syst. Dyn. 50, 495–507 (2012).  https://doi.org/10.1080/00423114.2011.598940 CrossRefGoogle Scholar
  18. 18.
    Gu, B., Asada, H.H.: Co-simulation of algebraically coupled dynamic subsystems without disclosure of proprietary subsystem models. J. Dyn. Syst. Meas. Control 126, 1 (2004).  https://doi.org/10.1115/1.1648307 CrossRefGoogle Scholar
  19. 19.
    Ambrósio, J., Pombo, J., Rauter, F., Pereira, M.: A memory based communication in the co-simulation of multibody and finite element codes for pantograph-catenary interaction simulation. In: Bottasso, C.L. (ed.) Multibody Dynamics, pp. 211–231. Springer, Dordrecht (2008) Google Scholar
  20. 20.
    Ambrósio, J., Pombo, J., Antunes, P., Pereira, M.: PantoCat statement of method. Veh. Syst. Dyn. 53, 314–328 (2015).  https://doi.org/10.1080/00423114.2014.969283 CrossRefGoogle Scholar
  21. 21.
    Massat, J.-P., Laurent, C., Bianchi, J.-P., Balmès, E.: Pantograph catenary dynamic optimisation based on advanced multibody and finite element co-simulation tools. Veh. Syst. Dyn. 52, 338–354 (2014).  https://doi.org/10.1080/00423114.2014.898780 CrossRefGoogle Scholar
  22. 22.
    Colombo, E.F., Di Gialleonardo, E., Facchinetti, A., Bruni, S.: Active carbody roll control in railway vehicles using hydraulic actuation. Control Eng. Pract. 31, 24–34 (2014).  https://doi.org/10.1016/j.conengprac.2014.05.010 CrossRefGoogle Scholar
  23. 23.
    Kuka, N., Verardi, R., Ariaudo, C., Dolcini, A.: Railway vehicle driveline modeling and co-simulations in SIMPACK-Simulink. In: Proceedings of the Third International Conference on Railway Technology: Research, Development and Maintenance, Cagliari, Sardinia, Italy. Civil-Comp Press, Stirlingshire (2016) Google Scholar
  24. 24.
    Knothe, K.L., Grassie, S.L.: Modelling of railway track and vehicle/track interaction at high frequencies. Veh. Syst. Dyn. 22, 209–262 (1993).  https://doi.org/10.1080/00423119308969027 CrossRefGoogle Scholar
  25. 25.
    Pombo, J., Ambrósio, J.: Application of a wheel–rail contact model to railway dynamics in small radius curved tracks. Multibody Syst. Dyn. 19, 91–114 (2008) CrossRefzbMATHGoogle Scholar
  26. 26.
    Magalhaes, H., Ambrosio, J., Pombo, J.: Railway vehicle modeling for the vehicle–track interaction compatibility analysis. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 230, 251–267 (2016).  https://doi.org/10.1177/1464419315608275 Google Scholar
  27. 27.
    Mazzola, L., Bruni, S.: Effect of suspension parameter uncertainty on the dynamic behavior of railway vehicles. In: Uncertainty in Mechanical Engineering. Applied Mechanics and Materials, vol. 104, pp. 177–185. Trans Tech Publ, Zurich (2012) Google Scholar
  28. 28.
    Polach, O., Evans, J.: Simulations of running dynamics for vehicle acceptance: application and validation. Int. J. Railw. Technol. 2(4), 59–84 (2013).  https://doi.org/10.4203/ijrt.2.4.4 CrossRefGoogle Scholar
  29. 29.
    Di Gialleonardo, E., Braghin, F., Bruni, S.: The influence of track modeling options on the simulation of rail vehicle dynamics. J. Sound Vib. 331, 4246–4258 (2012).  https://doi.org/10.1016/J.JSV.2012.04.024 CrossRefGoogle Scholar
  30. 30.
    Escalona, J.L., Sugiyama, H., Shabana, A.A.: Modelling of structural flexibility in multibody railroad vehicle systems. Veh. Syst. Dyn. 51, 1027–1058 (2013).  https://doi.org/10.1080/00423114.2013.786835 CrossRefGoogle Scholar
  31. 31.
    Lundqvist, A., Dahlberg, T.: Load impact on railway track due to unsupported sleepers. Proc. Inst. Mech. Eng., F J. Rail Rapid Transit 219, 67–77 (2005).  https://doi.org/10.1243/095440905X8790 CrossRefGoogle Scholar
  32. 32.
    Recuero, A.M., Escalona, J.L., Shabana, A.A.: Finite-element analysis of unsupported sleepers using three-dimensional wheel–rail contact formulation. Proc. Inst. Mech. Eng., Proc., Part K, J. Multi-Body Dyn. 225, 153–165 (2011).  https://doi.org/10.1177/2041306810394971 Google Scholar
  33. 33.
    Johansson, A., Pålsson, B., Ekh, M., Nielsen, J.C.O., Ander, M.K.A., Brouzoulis, J., Kassa, E.: Simulation of wheel–rail contact and damage in switches and crossings. Wear 271, 472–481 (2011).  https://doi.org/10.1016/j.wear.2010.10.014 CrossRefGoogle Scholar
  34. 34.
    Martínez-Casas, J., Di Gialleonardo, E., Bruni, S., Baeza, L.: A comprehensive model of the railway wheelset–track interaction in curves. J. Sound Vib. 333, 4152–4169 (2014).  https://doi.org/10.1016/J.JSV.2014.03.032 CrossRefGoogle Scholar
  35. 35.
    Zhai, W., Wang, K., Cai, C.: Fundamentals of vehicle–track coupled dynamics. Veh. Syst. Dyn. 47, 1349–1376 (2009).  https://doi.org/10.1080/00423110802621561 CrossRefGoogle Scholar
  36. 36.
    Nikravesh, P.E.: Computer-Aided Analysis of Mechanical Systems. Prentice Hall, Englewood Cliffs (1988) Google Scholar
  37. 37.
    Ambrósio, J., Neto, A.: Stabilization methods for the integration of DAE in the presence of redundant constraints. Multibody Syst. Dyn. 10, 81–105 (2003) MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Gear, C.W.: Simultaneous numerical solution of differential-algebraic equations. IEEE Trans. Circuit Theory 18, 89–95 (1971) CrossRefGoogle Scholar
  39. 39.
    Przemieniecki, J.S.: Theory of Matrix Structural Analysis. McGraw-Hill, New York (1968) zbMATHGoogle Scholar
  40. 40.
    Ambrósio, J., Antunes, P., Pombo, J.J.: On the requirements of interpolating polynomials for path motion constraints. In: Kecskeméthy, A., Geu Flores, F. (eds.) Mechanisms and Machine Science, pp. 179–197. Springer, Berlin (2015) Google Scholar
  41. 41.
    Pombo, J., Ambrósio, J.: An alternative method to include track irregularities in railway vehicle dynamic analyses. Nonlinear Dyn. 68, 161–176 (2012) CrossRefGoogle Scholar
  42. 42.
    Costa, J., Antunes, P., Magalhães, H., Ambrósio, J., Pombo, J.: Development of flexible track models for railway vehicle dynamics applications. In: Pombo, J. (ed.) Proceedings of the Third International Conference on Railway Technology: Research, Development and Maintenance. Civil-Comp Press, Stirlingshire (2016) Google Scholar
  43. 43.
    Hughes, T.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Prentice Hall, Englewood Cliffs (1987) zbMATHGoogle Scholar
  44. 44.
    Bathe, K.-J.: Finite Element Procedures. Prentice Hall, Englewood Cliffs (1996) zbMATHGoogle Scholar
  45. 45.
    Newmark, N.: A method of computation for structural dynamics. J. Eng. Mech. Div. 85, 67–94 (1959) Google Scholar
  46. 46.
    Pombo, J., Ambrósio, J., Silva, M.: A new wheel–rail contact model for railway dynamics. Veh. Syst. Dyn. 45, 165–189 (2007) CrossRefGoogle Scholar
  47. 47.
    Lankarani, H.M., Nikravesh, P.E.: A contact force model with hysteresis damping for impact analysis of multibody systems. J. Mech. Des. 112, 369–376 (1990) CrossRefGoogle Scholar
  48. 48.
    Polach, O.: A fast wheel-rail forces calculation computer code. Veh. Syst. Dyn. 33, 728–739 (1999) Google Scholar
  49. 49.
    Wen, Z., Wu, L., Li, W., Jin, X., Zhu, M.: Three-dimensional elastic–plastic stress analysis of wheel–rail rolling contact. Wear 271, 426–436 (2011).  https://doi.org/10.1016/j.wear.2010.10.001 CrossRefGoogle Scholar
  50. 50.
    Schweizer, B., Li, P., Lu, D., Meyer, T.: Stabilized implicit co-simulation methods: solver coupling based on constitutive laws (2015) Google Scholar
  51. 51.
    Quinn, M.J.: Parallel Programming in C with MPI and OpenMP. McGraw-Hill Higher Education, New York (2004) Google Scholar
  52. 52.
    Wilkinson, B., Allen, C.M.: Parallel Programming: Techniques and Applications Using Networked Workstations and Parallel Computers. Pearson/Prentice Hall, Upper Saddle River/New York (2005) Google Scholar
  53. 53.
    Downey, A.B.: The little book of semaphores. Science 80(211), 1–291 (2009).  https://doi.org/10.1017/CBO9781107415324.004 Google Scholar
  54. 54.
    Li, D., Selig, E.T.: Method for railroad track foundation design. I: Development. J. Geotech. Geoenviron. Eng. 124, 316–322 (1998).  https://doi.org/10.1061/(ASCE)1090-0241(1998)124:4(316) CrossRefGoogle Scholar
  55. 55.
    SMARTRACK Project—System Dynamics Assessment of Railway Tracks: A Vehicle-Infrastructure Integrated Approach. FCT, PTDC/EME-PME/101419/2008 (2013) Google Scholar
  56. 56.
    CEN: EN 13674-1 Railway applications - Track - Rail - Part 1: Vignole railway rails \(46~\mbox{kg}/\mbox{m}\) and above (2011) Google Scholar
  57. 57.
    Zhai, W., Wang, K., Cai, C.: Fundamentals of vehicle–track coupled dynamics. Veh. Syst. Dyn. 47, 1349–1376 (2009).  https://doi.org/10.1080/00423110802621561 CrossRefGoogle Scholar
  58. 58.
    Zhai, W.M., Wang, K.Y., Lin, J.H.: Modelling and experiment of railway ballast vibrations. J. Sound Vib. 270, 673–683 (2004).  https://doi.org/10.1016/S0022-460X(03)00186-X CrossRefGoogle Scholar
  59. 59.
    Esveld, C.: Improved knowledge of CWR track. In: Interact. Conf. Cost Eff. Saf. Asp. Railw. Track (1998) Google Scholar
  60. 60.
    Magalhães, H.: Development of advanced computational models of railway vehicles. Master Thesis, Instituto Superior Técnico, Lisboa, Portugal (2013) Google Scholar
  61. 61.
    Costa, J.: Railway dynamics with flexible tracks. Master Thesis, Instituto Superior Técnico, Lisboa, Portugal (2015) Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.IDMEC, Instituto Superior TécnicoUniversidade de LisboaLisbonPortugal
  2. 2.ISELIPLLisbonPortugal
  3. 3.University of HuddersfieldHuddersfieldUK

Personalised recommendations