Advertisement

Multibody System Dynamics

, Volume 45, Issue 1, pp 105–125 | Cite as

Rocking dynamics of a planar rectangular block on a rigid surface

  • Zhen Zhao
  • Caishan LiuEmail author
  • Nannan Wang
Article
  • 186 Downloads

Abstract

The motion of a rigid rectangular block rocking on a rigid surface involves several motion modes, including rotation around the base corner of the block, point or surface impacts between the block and the surface, and possible uplift following an impact event. With the exception of the surface impact, all other motion states can be easily simulated using the conventional classical mechanics theory. However, the surface impact is closely related to the rapid evolution of the stress field caused by the relative motion of the contact interface, making the associated dynamics relatively complex. Here, we report a novel model of the surface impact that is established by carefully considering the effects from the interface separation and the stick–slip transition of the Coulomb’s friction. This model provides a set of first-order differential equations with respect to the stress impulse, for which numerical methods can be used to obtain the output of the surface impact. In particular, the model can avoid the use of small variables, such as the time of impact and the length of local deformation, thus it is highly beneficial for numerical calculations. We validate this model using the experimental data reported in the existing literature, and then numerically investigate how the material properties of the contact interface affect the rocking motion.

Keywords

Surface impact Rocking block Friction Darboux–Keller approach Impulsive differential equations 

Notes

Acknowledgements

This work was supported by the NSFC (11572017, 11402033,11702002). We thank Honjian Zhang for providing the detailed experimental data reported in [23, 24] by Dr. Fernando Pena (Instituto de Ingenieria, UNAM Mexico).

References

  1. 1.
    Andreaus, U., Casini, P.: On the rocking–uplifting motion of a rigid block in free and forced motion: influence of sliding and bouncing. Acta Mech. 138(3), 219–241 (1999) zbMATHGoogle Scholar
  2. 2.
    Apostolou, M., Gazetas, G., Garini, E.: Seismic response of slender rigid structures with foundation uplifting. Soil Dyn. Earthq. Eng. 27(7), 642–654 (2007) Google Scholar
  3. 3.
    Brogliato, B.: Nonsmooth Mechanics. Springer, Berlin (1999) zbMATHGoogle Scholar
  4. 4.
    Chatzis, M., Smyth, A.: Robust modeling of the rocking problem. J. Eng. Mech. 138(3), 247–262 (2011) Google Scholar
  5. 5.
    Chatzis, M., Smyth, A.: Modeling of the 3D rocking problem. Int. J. Non-Linear Mech. 47(4), 85–98 (2012) Google Scholar
  6. 6.
    Chatzis, M., Espinosa, M.G., Smyth, A.: Examining the energy loss in the inverted pendulum model for rocking bodies. J. Eng. Mech. 143(5), 04017 (2017). 013 Google Scholar
  7. 7.
    Dimitrakopoulos, E.G., DeJong, M.J.: Revisiting the rocking block: closed-form solutions and similarity laws. Proc. R. Soc. Lond. A, Math. Phys. Eng. Sci. 468, 2294–2318 (2012) Google Scholar
  8. 8.
    Dimitri, R., De Lorenzis, L., Zavarise, G.: Numerical study on the dynamic behavior of masonry columns and arches on buttresses with the discrete element method. Eng. Struct. 33(12), 3172–3188 (2011) Google Scholar
  9. 9.
    ElGawady, M.A., Ma, Q., Butterworth, J.W.: Effects of interface material on the performance of free rocking blocks. Earthq. Eng. Struct. Dyn. 40(4), 375–392 (2011) Google Scholar
  10. 10.
    Giouvanidis, A.I., Dimitrakopoulos, E.G.: Nonsmooth dynamic analysis of sticking impacts in rocking structures. Bull. Earthq. Eng. 15(5), 2273–2304 (2017) Google Scholar
  11. 11.
    Hogan, S.: On the dynamics of rigid-block motion under harmonic forcing. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, vol. 425, pp. 441–476 (1989) Google Scholar
  12. 12.
    Hogan, S.: On the dynamics of rigid-block motion under harmonic forcing. Proc. R. Soc. Lond. A, Math. Phys. Eng. Sci. 425(1869), 441–476 (1989) MathSciNetGoogle Scholar
  13. 13.
    Housner, G.W.: The behavior of inverted pendulum structures during earthquakes. Bull. Seismol. Soc. Am. 53(2), 403–417 (1963) Google Scholar
  14. 14.
    Ishiyama, Y.: Motions of rigid bodies and criteria for overturning by earthquake excitations. Earthq. Eng. Struct. Dyn. 10(5), 635–650 (1982) Google Scholar
  15. 15.
    Kalliontzis, D., Sritharan, S., Schultz, A.: Improved coefficient of restitution estimation for free rocking members. J. Struct. Eng. 142(12), 06016,002 (2016) Google Scholar
  16. 16.
    Koh, A.S., Spanos, P.D., Roesset, J.M.: Harmonic rocking of rigid block on flexible foundation. J. Eng. Mech. 112(11), 1165–1180 (1986) Google Scholar
  17. 17.
    Lipscombe, P., Pellegrino, S.: Free rocking of prismatic blocks. J. Eng. Mech. 119(7), 1387–1410 (1993) Google Scholar
  18. 18.
    Liu, C., Zhao, Z., Brogliato, B.: Frictionless multiple impacts in multibody systems. I. Theoretical framework. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, vol. 464, pp. 3193–3211 (2008) Google Scholar
  19. 19.
    Liu, C., Zhao, Z., Brogliato, B.: Frictionless multiple impacts in multibody systems. II. Numerical algorithm and simulation results. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, vol. 465, pp. 1–23 (2009) Google Scholar
  20. 20.
    Makris, N., Konstantinidis, D.: The rocking spectrum and the limitations of practical design methodologies. Earthq. Eng. Struct. Dyn. 32(2), 265–289 (2003) Google Scholar
  21. 21.
    Palmeri, A., Makris, N.: Response analysis of rigid structures rocking on viscoelastic foundation. Earthq. Eng. Struct. Dyn. 37(7), 1039–1063 (2008) Google Scholar
  22. 22.
    Papantonopoulos, C., Psycharis, I., Papastamatiou, D., Lemos, J., Mouzakis, H.: Numerical prediction of the earthquake response of classical columns using the distinct element method. Earthq. Eng. Struct. Dyn. 31(9), 1699–1717 (2002) Google Scholar
  23. 23.
    Pena, F., Prieto, F., Lourenco, P.B.: On the dynamics of rocking motion of single rigid-block structures. Earthq. Eng. Struct. Dyn. 36(15), 2383–2399 (2007) Google Scholar
  24. 24.
    Pena, F., Lourenco, P.B., Campos-Costa, A.: Experimental dynamic behavior of free-standing multi-block structures under seismic loadings. J. Earthq. Eng. 12(6), 953–979 (2008) Google Scholar
  25. 25.
    Priestley, M., Evison, R., Carr, A.: Seismic response of structures free to rock on their foundations. Bull. N. Z. Nat. Soc. Earthq. Eng. 11(3), 141–150 (1978) Google Scholar
  26. 26.
    Psycharis, I.N., Jennings, P.C.: Rocking of slender rigid bodies allowed to uplift. Earthq. Eng. Struct. Dyn. 11(1), 57–76 (1983) Google Scholar
  27. 27.
    Rubinstein, S., Cohen, G., Fineberg, J.: Detachment fronts and the onset of dynamic friction. Nature 430, 1005–1009 (2004) Google Scholar
  28. 28.
    Selyutskiy, Y., Garziera, R., Collini, L.: On dynamics of a rigid body on a moving rough plane. Arch. Appl. Mech. 5(87), 829–839 (2017) Google Scholar
  29. 29.
    Shenton, H.W. III: Criteria for initiation of slide, rock, and slide-rock rigid-body modes. Journal of Engineering Mechanics 122(7), 690–693 (1996) Google Scholar
  30. 30.
    Shenton, H.W. III, Jones, N.P.: Base excitation of rigid bodies. I: formulation. Journal of Engineering Mechanics 117(10), 2286–2306 (1991) Google Scholar
  31. 31.
    Spanos, P.D., Koh, A.S.: Rocking of rigid blocks due to harmonic shaking. J. Eng. Mech. 110(11), 1627–1642 (1984) Google Scholar
  32. 32.
    Stronge, W.J.: Impact Mechanics. Cambridge University Press, Cambridge (2000) zbMATHGoogle Scholar
  33. 33.
    Vassiliou, M.F., Makris, N.: Analysis of the rocking response of rigid blocks standing free on a seismically isolated base. Earthq. Eng. Struct. Dyn. 41(2), 177–196 (2012) Google Scholar
  34. 34.
    Vassiliou, M.F., Burger, S., Egger, M., Bachmann, J.A., Broccardo, M., Stojadinovic, B.: The three-dimensional behavior of inverted pendulum cylindrical structures during earthquakes. Earthq. Eng. Struct. Dyn. (2017) Google Scholar
  35. 35.
    Vassiliou, M.F., Mackie, K.R., Stojadinović, B.: A finite element model for seismic response analysis of deformable rocking frames. Earthq. Eng. Struct. Dyn. 46(3), 447–466 (2017) Google Scholar
  36. 36.
    Voyagaki, E., Psycharis, I.N., Mylonakis, G.: Complex response of a rocking block to a full-cycle pulse. J. Eng. Mech. 140(6), 04014,024 (2014) Google Scholar
  37. 37.
    Winkler, T., Meguro, K., Yamazaki, F.: Response of rigid body assemblies to dynamic excitation. Earthq. Eng. Struct. Dyn. 24(10), 1389–1408 (1995) Google Scholar
  38. 38.
    Yilmaz, C., Gharib, M., Hurmuzlu, Y.: Solving frictionless rocking block problem with multiple impacts. Proc. R. Soc. Lond. A, Math. Phys. Eng. Sci. 465, 3323–3339 (2009) MathSciNetzbMATHGoogle Scholar
  39. 39.
    Yim, C.S., Chopra, A.K., Penzien, J.: Rocking response of rigid blocks to earthquakes. Earthq. Eng. Struct. Dyn. 8(6), 565–587 (1980) Google Scholar
  40. 40.
    Zhang, H., Brogliato, B., Liu, C.: Study of the planar rocking-block dynamics with Coulomb friction: critical kinetic angles. J. Comput. Nonlinear Dyn. 021, 002 (2013) Google Scholar
  41. 41.
    Zhang, H., Brogliato, B., Liu, C.: Dynamics of planar rocking-blocks with Coulomb friction and unilateral constraints: comparisons between experimental and numerical data. Multibody Syst. Dyn. 32(1), 1–25 (2014) MathSciNetGoogle Scholar
  42. 42.
    Zhang, J., Makris, N.: Rocking response of free-standing blocks under cycloidal pulses. J. Eng. Mech. 127(5), 473–483 (2001) Google Scholar
  43. 43.
    Zhao, Z., Liu, C., Chen, B.: The numerical method for three-dimensional impact with friction of multi-rigid-body system. Sci. China, Ser. G 49(1), 102–118 (2006) zbMATHGoogle Scholar
  44. 44.
    Zhao, Z., Liu, C., Ma, D.: Pure rotation of a prism on a ramp. In: Proc. R. Soc. A, The Royal Society, vol. 470 (2014), p. 20140007 Google Scholar
  45. 45.
    Zulli, D., Contento, A., Di Egidio, A.: 3D model of rigid block with a rectangular base subject to pulse-type excitation. Int. J. Non-Linear Mech. 47(6), 679–687 (2012) Google Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.School of Aeronautic Science and EngineeringBeihang UniversityBeijingChina
  2. 2.State Key Laboratory for Turbulence and Complex Systems, College of EngineeringPeking UniversityBeijingChina
  3. 3.College of EngineeringPeking UniversityBeijingChina

Personalised recommendations