Multibody System Dynamics

, Volume 41, Issue 4, pp 391–402 | Cite as

Coupled thermo-structural analysis of a bimetallic strip using the absolute nodal coordinate formulation

  • Gregor Čepon
  • Blaž Starc
  • Blaž Zupančič
  • Miha Boltežar


A bimetallic strip consists of two different metal pieces that are bonded together. Due to the different coefficients of thermal expansion, exposing the strip to temperature induces thermal stresses that cause the structure to bend. Most often, incremental finite-element methods that introduce element nodal coordinates have been successfully applied to analyze the thermally induced vibrations in such systems. The exposure of these bimetallic strips to high temperatures results in large deflections and deformations, where the effects of the rigid-body motion and large rotations must be taken into account. For classic, non-isoparametric elements such as beams and plates the incremental methods do not result in zero strains under arbitrary, rigid-body motion. Therefore, in this paper a new model of a bimetallic strip is proposed based on a coupled thermo-structural analysis using the absolute nodal coordinate formulation. The applied, non-incremental, absolute nodal coordinate formulation uses a set of global displacements and slopes so that the beam and the plate elements can be treated as isoparametric elements. In order to simulate the bimetallic strip’s dynamic response, the formulation of the shear-deformable beam element had to be extended with thermally induced stresses. This made it possible to model the coupled thermo-structural problem and to represent the connectivity constraints at the interface between the two strips of metal. The proposed formulation was verified by comparing the responses using a general-purpose finite-element software.


Bimetal Dynamics response Thermo-structural analysis Absolute nodal coordinate formulation Shear-deformable beam element 


  1. 1.
    Sedighi, M., Dardashti, B.N.: A review of thermal and mechanical analysis in single and bi-layer plate. Mater. Phys. Mech. 14(1), 37–46 (2012) Google Scholar
  2. 2.
    Boisseau, S., Despesse, G., Monfray, S., Puscasu, O., Skotnicki, T.: A bimetal and electret-based converter for thermal energy harvesting. ArXiv e-prints, pp. 1–3 (2012) Google Scholar
  3. 3.
    Muzychka, Y.S., Yovanovich, M.M.: Analytic models to compute transient thermal stresses in bimaterial systems. In: Advanced Technology for Electronic Packaging, Austin, TX (1996) Google Scholar
  4. 4.
    Chu, W.-H., Mehregany, M., Mullen, R.L.: Analysis of tip deflection and force of a bimetallic cantilever microactuator. J. Micromech. Microeng. 3(1), 4–7 (1993) CrossRefGoogle Scholar
  5. 5.
    Ross, D.S., Cabal, A., Trauernicht, D., Lebens, J.: Temperature-dependent vibrations of bilayer microbeams. Sens. Actuators A, Phys. 119(2), 537–543 (2005) CrossRefGoogle Scholar
  6. 6.
    Suocheng, W., Yongping, H., Shuangjie, L.: The design and analysis of a MEMS electrothermal actuator. J. Semicond. 36(4), 1–5 (2015) Google Scholar
  7. 7.
    Zou, Q., Sridhar, U., Lin, R.: A study on micromachined bimetallic actuation. Sens. Actuators A, Phys. 78(2), 212–219 (1999) CrossRefGoogle Scholar
  8. 8.
    Timoshenko, S.: Analysis of bimetal thermostats. J. Opt. Soc. Am. 11, 233–255 (1925) CrossRefGoogle Scholar
  9. 9.
    Mirman, B.A.: Interlaminar stresses in layered beams. J. Electron. Packag. 114, 389–396 (1992) CrossRefGoogle Scholar
  10. 10.
    Suhir, E.: Interfacial stresses in bimetal thermostats. J. Appl. Mech. 56, 595–600 (1989) CrossRefzbMATHGoogle Scholar
  11. 11.
    Suhir, E.: Thermally induced interfacial stresses in elongated bimaterial plates. Appl. Mech. Rev. 42, 252–262 (1989) CrossRefzbMATHGoogle Scholar
  12. 12.
    Hsu, T.-R.: MEMS and Microsystems: Design, Manufacture, and Nanoscale Engineering, 2nd edn. Wiley, New Jersey (2008) Google Scholar
  13. 13.
    Shabana, A.A.: Dynamics of Multibody Systems, 3rd edn. Cambridge University Press, Cambridge (2005) CrossRefzbMATHGoogle Scholar
  14. 14.
    Shabana, A.A.: Computer implementation of the absolute nodal coordinate formulation for flexible multibody dynamics. Nonlinear Dyn. 16(3), 293–306 (1998) CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Escalona, J.L., Hussien, H.A., Shabana, A.A.: Application of the absolute nodal co-ordinate formulation to multibody system dynamics. J. Sound Vib. 214, 833–851 (1998) CrossRefGoogle Scholar
  16. 16.
    Čepon, G., Boltežar, M.: Dynamics of a belt-drive system using a linear complementarity problem for the belt–pulley contact description. J. Sound Vib. 319(3), 1019–1035 (2009) Google Scholar
  17. 17.
    Mikkola, A.M., Shabana, A.A.: A new plate element based on the absolute nodal coordinate formulation. In: ASME Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Pittsburgh, PA, September, pp. 9–12 (2001) Google Scholar
  18. 18.
    Dufva, K.E., Sopanen, J.T., Mikkola, A.M.: A two-dimensional shear deformable beam element based on the absolute nodal coordinate formulation. J. Sound Vib. 280, 719–738 (2005) CrossRefGoogle Scholar
  19. 19.
    Omar, M.A., Shabana, A.A.: A two-dimensional shear deformable beam for large rotation and deformation problems. J. Sound Vib. 243(3), 565–576 (2001) CrossRefGoogle Scholar
  20. 20.
    Vallejo, D.G., Mikkola, A.M., Escalona, J.L.: A new locking-free shear deformable finite element based on absolute nodal coordinates. Nonlinear Dyn. 50, 249–264 (2007) CrossRefzbMATHGoogle Scholar
  21. 21.
    Gerstmayr, J., Shabana, A.A.: Analysis of thin beams and cables using the absolute nodal co-ordinate formulation. Nonlinear Dyn. 45, 109–130 (2006) CrossRefzbMATHGoogle Scholar
  22. 22.
    Sopanen, J.T., Mikkola, A.M.: Description of elastic forces in absolute nodal coordinate formulation. Nonlinear Dyn. 34, 53–74 (2003) CrossRefzbMATHGoogle Scholar
  23. 23.
    Matikainen, M.K., Dmitrochenko, O., Mikkola, A.M.: Beam elements with trapezoidal cross section deformation modes based on absolute nodal coordinate formulation. In: Proceedings of the International Conference of Numerical Analysis and Applied Mathematics, Rhodes, Greece (2010) Google Scholar
  24. 24.
    Gerstmayr, J., Irschik, H.: On the correct representation of bending and axial deformation in the absolute nodal coordinate formulation with an elastic line approach. J. Sound Vib. 318, 461–487 (2008) CrossRefGoogle Scholar
  25. 25.
    Dufva, K.E., Sopanen, J.T., Mikkola, A.M.: A two-dimensional shear deformable beam element based on the absolute nodal coordinate formulation. J. Sound Vib. 280, 719–738 (2005) CrossRefGoogle Scholar
  26. 26.
    Vallejo, D.G., Valverde, J., Dominguez, J.: An internal damping model for the absolute nodal coordinate formulation. Nonlinear Dyn. 42, 347–369 (2005) CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Abbas, L.K., Rui, X., Marzocca, P.: Aerothermoelastic analysis of panel flutter based on the absolute nodal coordinate formulation. Multibody Syst. Dyn. 33(2), 163–178 (2015) CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Shen, Z., Tian, Q., Liu, X., Hu, G.: Thermally induced vibrations of flexible beams using absolute nodal coordinate formulation. Aerosp. Sci. Technol. 29(1), 386–393 (2013) CrossRefGoogle Scholar
  29. 29.
    Shabana, A.A., Yakoub, R.Y.: Three dimensional absolute nodal coordinate formulation for beam elements: theory. J. Mech. Des. 123(3), 606–613 (2001) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Gregor Čepon
    • 1
  • Blaž Starc
    • 1
  • Blaž Zupančič
    • 2
  • Miha Boltežar
    • 1
  1. 1.Faculty of Mechanical EngineeringUniversity of LjubljanaLjubljanaSlovenia
  2. 2.ETI d. d.IzlakeSlovenia

Personalised recommendations