Advertisement

Multibody System Dynamics

, Volume 40, Issue 2, pp 193–211 | Cite as

Individual muscle contributions to ground reaction and to joint contact, ligament and bone forces during normal gait

  • F. Moissenet
  • L. Chèze
  • R. Dumas
Article

Abstract

Recent developments in musculoskeletal modelling have enabled numerous studies to explore how individual muscles contribute to progression, support and mechanical loading during gait. However, the literature still lacks data on the contributions of musculo-tendon forces to several structures, making it difficult to determine the primary contributors. The aim of the present study was thus to provide a comprehensive investigation of individual muscle contributions to ground reaction (i.e. 3D ground reaction force and moment), and to joint contact, ligament and bone (i.e. compression–traction of bony segments) forces during normal gait. We used a 3D lower limb musculoskeletal model coupled with a static optimisation method using a pseudo-inverse, which indeed yielded data on individual muscle contributions currently missing from the literature. We report the individual muscle contributions to (i) 3D ground reaction force and moment, (ii) hip, tibiofemoral, patellofemoral and ankle joint contact forces, (iii) tibiofemoral and ankle ligament forces, and (iv) femur, patella and tibia bone forces. In line with the recent literature, the primary contributors are the vastii, gluteus medius, soleus, rectus femoris, gemellus, quadratus femoris, gluteus maximus, and adductors. While the current observations are made on a generic model, the present method offers a comprehension tool that can shed light on the underlying mechanisms governing the musculoskeletal system.

Keywords

Individual muscle contribution Pseudo-inverse method Musculoskeletal modelling Static optimisation Gait 

Notes

Conflict of interest

There are no conflicts of interest associated with this research.

Supplementary material

11044_2017_9564_MOESM1_ESM.docx (3.8 mb)
(Microsoft Word Document 3.941 kB)

References

  1. 1.
    Herzog, W., Longino, D., Clark, A.: The role of muscles in joint adaptation and degeneration. Langenbeck’s Arch. Surg. 388, 305–315 (2003) CrossRefGoogle Scholar
  2. 2.
    Pandy, M.G., Andriacchi, T.P.: Muscle and joint function in human locomotion. Annu. Rev. Biomed. Eng. 12, 401–433 (2010) CrossRefGoogle Scholar
  3. 3.
    Higginson, J.S., Zajac, F.E., Neptune, R.R., Kautz, S.A., Delp, S.L.: Muscle contributions to support during gait in an individual with post-stroke hemiparesis. J. Biomech. 39, 1769–1777 (2006) CrossRefGoogle Scholar
  4. 4.
    Shelburne, K.B., Torry, M.R., Pandy, M.G.: Contributions of muscles, ligaments, and the ground-reaction force to tibiofemoral joint loading during normal gait. J. Orthop. Res. 24, 1983–1990 (2006) CrossRefGoogle Scholar
  5. 5.
    Anderson, F.C., Pandy, M.G.: Individual muscle contributions to support in normal walking. Gait Posture 17, 159–169 (2003) CrossRefGoogle Scholar
  6. 6.
    Neptune, R.R., Zajac, F.E., Kautz, S.A.: Muscle force redistributes segmental power for body progression during walking. Gait Posture 19, 194–205 (2004) CrossRefGoogle Scholar
  7. 7.
    Lin, Y.C., Kim, H.J., Pandy, M.G.: A computationally efficient method for assessing muscle function during human locomotion. Int. J. Numer. Methods Biomed. Eng. 27, 436–449 (2011) MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hamner, S.R., Delp, S.L.: Muscle contributions to fore-aft and vertical body mass center accelerations over a range of running speeds. J. Biomech. 46, 780–787 (2013) CrossRefGoogle Scholar
  9. 9.
    Liu, M.Q., Anderson, F.C., Schwartz, M.H., Delp, S.L.: Muscle contributions to support and progression over a range of walking speeds. J. Biomech. 41, 3243–3252 (2008) CrossRefGoogle Scholar
  10. 10.
    Caruthers, E.J., Thompson, J.A., Chaudhari, A.M.W., Schmitt, L.C., Best, T.M., Saul, K.R., Siston, R.A.: Muscle forces and their contributions to vertical and horizontal acceleration of the center of mass during sit-to-stand transfer in young, healthy adults. J. Appl. Biomech. 32, 487–503 (2016) CrossRefGoogle Scholar
  11. 11.
    Dixon, P.C., Jansen, K., Jonkers, I., Stebbins, J., Theologis, T., Zavatsky, A.B.: Muscle contributions to centre of mass acceleration during turning gait in typically developing children: a simulation study. J. Biomech. 48, 4238–4245 (2015) CrossRefGoogle Scholar
  12. 12.
    Neptune, R.R., McGowan, C.P.: Muscle contributions to frontal plane angular momentum during walking. J. Biomech. 49, 2975–2981 (2016) CrossRefGoogle Scholar
  13. 13.
    Arnold, A.S., Schwartz, M.H., Thelen, D.G., Delp, S.L.: Contributions of muscles to terminal-swing knee motions vary with walking speed. J. Biomech. 40, 3660–3671 (2007) CrossRefGoogle Scholar
  14. 14.
    Sritharan, P., Lin, Y.-C., Pandy, M.G.: Muscles that do not cross the knee contribute to the knee adduction moment and tibiofemoral compartment loading during gait. J. Orthop. Res. 30, 1586–1595 (2012) CrossRefGoogle Scholar
  15. 15.
    Pandy, M.G., Lin, Y.C., Kim, H.J.: Muscle coordination of mediolateral balance in normal walking. J. Biomech. 43, 2055–2064 (2010) CrossRefGoogle Scholar
  16. 16.
    Correa, T.A., Crossley, K.M., Kim, H.J., Pandy, M.G.: Contributions of individual muscles to hip joint contact force in normal walking. J. Biomech. 43, 1618–1622 (2010) CrossRefGoogle Scholar
  17. 17.
    Collins, J.J., O’Connor, J.J.: Muscle-ligament interactions at the knee during walking. Proc. Inst. Mech. Eng. H 205, 11–18 (1991) CrossRefGoogle Scholar
  18. 18.
    Fregly, B.J., Lin, Y., Walter, J.P., Pandy, M.G., Banks, S.A., D’Lima, D.D.: Muscle and contact contributions to inverse dynamic knee loads during gait. In: Proc. ASME 2009 Summer Bioeng. Conf., SBC2009, p. 206558 (2009) Google Scholar
  19. 19.
    Saxby, D.J., Modenese, L., Bryant, A.L., Gerus, P., Killen, B., Fortin, K., Wrigley, T.V., Bennell, K.L., Cicuttini, F.M., Lloyd, D.G.: Tibiofemoral contact forces during walking, running and sidestepping. Gait Posture 49, 78–85 (2016) CrossRefGoogle Scholar
  20. 20.
    Moissenet, F., Chèze, L., Dumas, R.: Contribution of individual musculo-tendon forces to the axial compression force of the femur during normal gait. Mov. Sport Sci. - Sci. Mot. 93, 63–69 (2016) CrossRefGoogle Scholar
  21. 21.
    Mokhtarzadeh, H., Yeow, C.H., Hong Goh, J.C., Oetomo, D., Malekipour, F., Lee, P.V.S.: Contributions of the soleus and gastrocnemius muscles to the anterior cruciate ligament loading during single-leg landing. J. Biomech. 46, 1913–1920 (2013) CrossRefGoogle Scholar
  22. 22.
    Moissenet, F., Chèze, L., Dumas, R.: A 3D lower limb musculoskeletal model for simultaneous estimation of musculo-tendon, joint contact, ligament and bone forces during gait. J. Biomech. 47, 50–58 (2014) CrossRefGoogle Scholar
  23. 23.
    Moissenet, F., Chèze, L., Dumas, R.: Influence of the level of muscular redundancy on the validity of a musculoskeletal model. J. Biomech. Eng. 138 (2016) Google Scholar
  24. 24.
    Klein Horsman, M.D., Koopman, H.F.J.M., van der Helm, F.C.T., Prosé, L.P., Veeger, H.E.J.: Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity. Clin. Biomech. (Bristol, Avon) 22, 239–247 (2007) CrossRefGoogle Scholar
  25. 25.
    van Arkel, R.J., Modenese, L., Phillips, A.T.M., Jeffers, J.R.T.: Hip abduction can prevent posterior edge loading of hip replacements. J. Orthop. Res. 31, 1172–1179 (2013) CrossRefGoogle Scholar
  26. 26.
    Dumas, R., Moissenet, F., Gasparutto, X., Cheze, L., Chèze, L., Cheze, L.: Influence of joint models on lower-limb musculo-tendon forces and three-dimensional joint reaction forces during gait. Proc. Inst. Mech. Eng., H J. Eng. Med. 226, 146–160 (2012) CrossRefGoogle Scholar
  27. 27.
    Moissenet, F., Chèze, L., Dumas, R.: Anatomical kinematic constraints: consequences on musculo-tendon forces and joint reactions. Multibody Syst. Dyn. 28, 125–141 (2012) MathSciNetCrossRefGoogle Scholar
  28. 28.
    Garcia de Jalon, J., Bayo, E.: Kinematic and Dynamic Simulation of Multibody Systems. The Real-Time Challenge. Springer, New York (1994) CrossRefGoogle Scholar
  29. 29.
    Moissenet, F., Chèze, L., Dumas, R.: Potential of the pseudo-inverse method as a constrained static optimization for musculo-tendon forces prediction. J. Biomech. Eng. 134, 64503 (2012) CrossRefGoogle Scholar
  30. 30.
    Leardini, A., Sawacha, Z., Paolini, G., Ingrosso, S., Nativo, R., Benedetti, M.G.: A new anatomically based protocol for gait analysis in children. Gait Posture 26, 560–571 (2007) CrossRefGoogle Scholar
  31. 31.
    Hermens, H.J., Freriks, B., Disselhorst-Klug, C., Rau, G.: Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 10, 361–374 (2000) CrossRefGoogle Scholar
  32. 32.
    Barre, A., Armand, S.: Biomechanical ToolKit: open-source framework to visualize and process biomechanical data. Comput. Methods Programs Biomed. 114, 80–87 (2014) CrossRefGoogle Scholar
  33. 33.
    Dickerson, C.R., Hughes, R.E., Chaffin, D.B.: Experimental evaluation of a computational shoulder musculoskeletal model. Clin. Biomech. (Bristol, Avon) 23, 886–894 (2008) CrossRefGoogle Scholar
  34. 34.
    Giroux, M., Moissenet, F., Dumas, R.: EMG-based validation of musculo-skeletal models for gait analysis. Comput. Methods Biomech. Biomed. Eng. 16, 152–156 (2013) CrossRefGoogle Scholar
  35. 35.
    Pedersen, D.R., Brand, R.A., Cheng, C., Arora, J.S.: Direct comparison of muscle force predictions using linear and nonlinear programming. J. Biomech. Eng. 109, 192–199 (1987) CrossRefGoogle Scholar
  36. 36.
    Perry, J., Burnfield, J., Perry, D.J., Burnfield, D.J.: Gait Analysis: Normal and Pathological Function. SLACK Incorporated, Thorofare (1992) Google Scholar
  37. 37.
    Kinney, A.L., Besier, T.F., D’Lima, D.D., Fregly, B.J.: Update on grand challenge competition to predict in vivo knee loads. J. Biomed. Eng. 135, 210121–210124 (2013) Google Scholar
  38. 38.
    Moissenet, F., Giroux, M., Chèze, L., Dumas, R.: Validity of a musculoskeletal model using two different geometries for estimating hip contact forces during normal walking. Comput. Methods Biomech. Biomed. Eng. 18(Suppl 1), 2000–2001 (2015) CrossRefGoogle Scholar
  39. 39.
    Fregly, B.J., Besier, T.F., Lloyd, D.G., Delp, S.L., Banks, S.A., Pandy, M.G., D’Lima, D.D.: Grand challenge competition to predict in vivo knee loads. J. Orthop. Res. 30, 503–513 (2012) CrossRefGoogle Scholar
  40. 40.
    Gerus, P., Sartori, M., Besier, T.F., Fregly, B.J., Delp, S.L., Banks, S.A., Pandy, M.G., D’Lima, D.D., Lloyd, D.G.: Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces. J. Biomech. 46, 2778–2786 (2013) CrossRefGoogle Scholar
  41. 41.
    Beynnon, B.D., Fleming, B.C.: Anterior cruciate ligament strain in-vivo: a review of previous work. J. Biomech. 31, 519–525 (1998) CrossRefGoogle Scholar
  42. 42.
    Shelburne, K.B., Pandy, M.G., Anderson, F.C., Torry, M.R.: Pattern of anterior cruciate ligament force in normal walking. J. Biomech. 37, 797–805 (2004) CrossRefGoogle Scholar
  43. 43.
    Leardini, A., O’Connor, J.J., Catani, F., Giannini, S.: The role of the passive structures in the mobility and stability of the human ankle joint: a literature review. Foot Ankle Int. 21, 602–615 (2000) CrossRefGoogle Scholar
  44. 44.
    Lu, T.W., O’Connor, J.J., Taylor, S.J., Walker, P.S.: Validation of a lower limb model with in vivo femoral forces telemetered from two subjects. J. Biomech. 31, 63–69 (1998) CrossRefGoogle Scholar
  45. 45.
    Marra, M.A., Vanheule, V., Fluit, R., Koopman, B.H.F.J.M., Rasmussen, J., Verdonschot, N.J.J., Andersen, M.S., Fluit, R., Koopman, B.H.F.J.M., Rasmussen, J., Verdonschot, N.J.J., Andersen, M.S.: A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty. J. Biomech. Eng. 137, 20904 (2014) CrossRefGoogle Scholar
  46. 46.
    Lenaerts, G., De Groote, F., Demeulenaere, B., Mulier, M., Van der Perre, G., Spaepen, A., Jonkers, I.: Subject-specific hip geometry affects predicted hip joint contact forces during gait. J. Biomech. 41, 1243–1252 (2008) CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Laboratoire d’Analyse du Mouvement et de la PostureCentre National de Rééducation Fonctionnelle et de Réadaptation—RehazenterLuxembourgLuxembourg
  2. 2.Univ Lyon, Université Claude Bernard Lyon 1, IFSTTAR, UMR_T9406LBMCLyonFrance

Personalised recommendations