Advertisement

Multibody System Dynamics

, Volume 39, Issue 1–2, pp 95–114 | Cite as

Multi-physics modelling of a compliant humanoid robot

  • Alexandra A. ZobovaEmail author
  • Timothée Habra
  • Nicolas Van der Noot
  • Houman Dallali
  • Nikolaos G. Tsagarakis
  • Paul Fisette
  • Renaud Ronsse
Article

Abstract

We present a multibody simulator being used for compliant humanoid robot modelling and report our reasoning for choosing the settings of the simulator’s key features. First, we provide a study on how the numerical integration speed and accuracy depend on the coordinate representation of the multibody system. This choice is particularly critical for mechanisms with long serial chains (e.g. legs and arms). Our second contribution is a full electromechanical model of the inner dynamics of the compliant actuators embedded in the COMAN robot, since joints’ compliance is needed for the robot safety and energy efficiency. Third, we discuss the different approaches for modelling contacts and selecting an appropriate contact library. The recommended solution is to couple our simulator with an open-source contact library offering both accurate and fast contact modelling. The simulator performances are assessed by two different tasks involving contacts: a bimanual manipulation task and a squatting tasks. The former shows reliability of the simulator. For the latter, we report a comparison between the robot behaviour as predicted by our simulation environment, and the real one.

Keywords

Multibody dynamics COMAN Compliant actuators Contact dynamics Humanoid robot Robotran Simbody 

Notes

Acknowledgements

This work is supported by the European Community”s Seventh Framework Programme (FP7/2007-2013) under Grant 611832 (WALK-MAN), by the foundation “Wallonie-Brussel International” (post-doc scholarship awarded to AZ), and by the Belgian F.R.S.-FNRS (Crédit aux Chercheurs #6809010 awarded to RR, Aspirant #16744574 awarded to NVdN).

References

  1. 1.
    Tsagarakis, N.G., Morfey, S., Cerda, G.M., Zhibin, L., Caldwell, D.G.: Compliant humanoid coman: optimal joint stiffness tuning for modal frequency control. In: IEEE Robotics and Automation, ICRA, pp. 673–678 (2013) Google Scholar
  2. 2.
    Tsagarakis, N.G., Morfey, S., Dallali, H., Medrano-Cerda, G.A., Caldwell, D.G.: An asymmetric compliant antagonistic joint design for high performance mobility. In: IEEE Intelligent Robots and Systems, IROS, pp. 5512–5517 (2013) Google Scholar
  3. 3.
    Docquier, N., Poncelet, A., Fisette, P.: ROBOTRAN: a powerful symbolic generator of multibody models. Mech. Sci. 4(1), 199–219 (2013) CrossRefGoogle Scholar
  4. 4.
    Dallali, H., Mosadeghzad, M., Medrano-Cerda, G., Docquier, N., Kormushev, P., Tsagarakis, N., Li, Zh., Caldwell, D.: Development of a dynamic simulator for a compliant humanoid robot based on a symbolic multibody approach. In: IEEE International Conference on Mechatronics, ICM, pp. 598–603 (2013) Google Scholar
  5. 5.
    Sherman, M.A., Seth, A., Delp, S.L.: Simbody: multibody dynamics for biomedical research. Proc. IUTAM 2, 241–261 (2011) CrossRefGoogle Scholar
  6. 6.
    Van der Noot, N., Colasanto, L., Barrea, A., Van den Kieboom, J., Ronsse, R., Ijspeert, A.J.: Experimental validation of a bio-inspired controller for dynamic walking with a humanoid robot. In: Intelligent Robots and Systems, IROS, pp. 393–400 (2015). IEEE Google Scholar
  7. 7.
    Dallali, H., Mosadeghzad, M., Medrano-Cerda, G., Vo-Gia L., Tsagarakis, N., Caldwell, D., Gesino, M.: Designing a high performance humanoid robot based on dynamic simulation. In: 2013 European Modelling Symposium, EMS, pp. 359–364 (2013). IEEE CrossRefGoogle Scholar
  8. 8.
    Smith, R.: Open Dynamics Engine (ODE). http://www.ode.org/. Accessed 21 June 2016
  9. 9.
    Mistry, M., Schaal, S., Yamane, K.: Inertial parameter estimation of floating base humanoid systems using partial force sensing. In: 9th IEEE-RAS International Conference on Humanoid Robots, pp. 492–497 (2009). IEEE Google Scholar
  10. 10.
    Sentis, L.: Synthesis and Control of Whole-Body Behaviors in Humanoid Systems. PhD Thesis, Stanford University (2007) Google Scholar
  11. 11.
    Fitzpatrick, P., Metta, G., Natale, L.: Towards long-lived robot genes. Robot. Auton. Syst. 56(1), 29–45 (2008) CrossRefGoogle Scholar
  12. 12.
    Habra, T., Dallali, H., Cardellino, A., Natale, L., Tsagarakis, N., Fisette, P., Ronsse, R.: Robotran-YARP interface: a framework for real-time controller developments based on multibody dynamics simulations. In: Multibody Dynamics: Computational Methods and Applications, pp. 147–164. Springer, Berlin (2016) CrossRefGoogle Scholar
  13. 13.
    Ivaldi, S., Peters, J., Padois, V., Nori, F.: Tools for dynamics simulation of robots: a survey based on user feedback. In: Proceedings of 2014 IEEE-RAS International Conference on Humanoid Robots, pp. 842–849 (2014). IEEE CrossRefGoogle Scholar
  14. 14.
    Boeing, A., Bräunl, Th.: Evaluation of real-time physics simulation systems. In: Proceedings of the 5th International Conference on Computer Graphics and Interactive Techniques in Australia and Southeast Asia, pp. 281–288. ACM, New York (2007) Google Scholar
  15. 15.
    Todorov, E., Erez, T., Tassa, Y.: MuJoCo: a physics engine for model-based control. In: IEEE Intelligent Robots and Systems, IROS, pp. 5026–5033 (2012) Google Scholar
  16. 16.
    Samin, J-C., Fisette, P.: Symbolic Modeling of Multibody Systems. Kluwer Academic Publishers, Dordrecht (2003) CrossRefzbMATHGoogle Scholar
  17. 17.
    Bullet Physics library. http://bulletphysics.org/. Accessed 21 June 2016
  18. 18.
    Van den Bergen, G., Gregorius, D.: Game Physics Pearls. AK Peters, Wellesley (2010) CrossRefGoogle Scholar
  19. 19.
    Manual, O.D.E., Wiki: http://ode-wiki.org/wiki/index.php?title=Manual/. Accessed 21 June 2016
  20. 20.
    Maxima, a Computer Algebra System. http://maxima.sourceforge.net/. Accessed 21 June 2016
  21. 21.
    Khalil, W., Vijayalingam, A., Khomutenko, B., Mukhanov, I., Lemoine, Ph., Ecorchard, G.: OpenSYMORO: an open-source software package for symbolic modelling of robots. In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics Proceedings, pp. 1206–1211 (2014). IEEE Google Scholar
  22. 22.
    MapleSim—High Performance Physical Modeling and Simulation—Technical Computing Software. http://www.maplesoft.com/products/maplesim/index1.aspx. Accessed 21 June 2016
  23. 23.
    Spong, M.W.: Modeling and control of elastic joint robots. J. Dyn. Syst. Meas. Control 109(4), 310–318 (1987) CrossRefzbMATHGoogle Scholar
  24. 24.
    Siciliano, B., Khatib, O. (eds.): Springer Handbook of Robotics. Springer, Berlin (2008) zbMATHGoogle Scholar
  25. 25.
    Blau, P.J.: Friction Science and Technology: From Concepts to Applications. CRC Press, Boca Raton (2009) Google Scholar
  26. 26.
    Chatterjee, A., Ruina, A.: A new algebraic rigid body collision law based on impulse space considerations. J. Appl. Mech. 65(4), 939–951 (1998) CrossRefGoogle Scholar
  27. 27.
    Brogliato, B., ten Dam, A., Paoli, L., Génot, F., Abadie, M.: Numerical simulation of finite dimensional multibody nonsmooth mechanical systems. Appl. Mech. Rev. 55(2), 107–150 (2002) CrossRefGoogle Scholar
  28. 28.
    Drumwright, E., Shell, D.A.: An evaluation of methods for modeling contact in multibody simulation. In: Robotics and Automation, ICRA, pp. 1695–1701 (2011) Google Scholar
  29. 29.
    Hippmann, G.: An algorithm for compliant contact between complexly shaped bodies. Multibody Syst. Dyn. 12(4), 345–362 (2004) MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Pérez-González, A., Fenollosa-Esteve, C., Sancho-Bru, J.L., Sánchez-Marín, F.T., Vergara, M., Rodríguez-Cervantes, P.J.: A modified elastic foundation contact model for application in 3D models of the prosthetic knee. Med. Eng. Phys. 30(3), 387–398 (2008) CrossRefGoogle Scholar
  31. 31.
    Simbody: Multibody Physics API. https://simtk.org/projects/simbody. Accessed 21 June 2016
  32. 32.
    Negrello, F., Garabini, M., Catalano, M.G., Kryczka, P., Choi, W., Caldwell, D., Bicchi, A., Tsagarakis, N.G.: WALK-MAN humanoid lower body design optimization for enhanced physical performance. In: IEEE International Conference on Robotics and Automation, ICRA, pp. 1817–1824 (2016) Google Scholar
  33. 33.
    Simulators of the COMAN and WALK-MAN humanoid robots. https://gitlab.robotran.be/walkman/coman_robotran/, https://gitlab.robotran.be/walkman/walkman_robotran/. Accessed 21 June 2016

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Alexandra A. Zobova
    • 1
    Email author
  • Timothée Habra
    • 4
  • Nicolas Van der Noot
    • 3
    • 4
  • Houman Dallali
    • 2
  • Nikolaos G. Tsagarakis
    • 2
  • Paul Fisette
    • 4
  • Renaud Ronsse
    • 4
  1. 1.Faculty of Mechanics and MathematicsLomonosov Moscow State UniversityMoscowRussia
  2. 2.Department of Advanced RoboticsIstituto Italiano di TecnologiaGenovaItaly
  3. 3.Biorobotics Laboratory, Institute of Bioengineering, École polytechnique fédérale de Lausanne (EPFL)EPFL STI IBI BIOROBLausanneSwitzerland
  4. 4.Center for Research in Mechatronics, Institute of Mechanics, Materials, and Civil EngineeringUniversité catholique de Louvain (UCL)Louvain-la-NeuveBelgium

Personalised recommendations