Multibody System Dynamics

, Volume 41, Issue 1, pp 25–45 | Cite as

Simultaneous estimation of the path, magnitude and orientation of the femorotibial contact forces using bone geometry constraints: an exploratory numerical study for the stance phase of gait

  • P. O. Lemieux
  • T. Cresson
  • R. Aissaoui


The present study introduced a new method to simultaneously optimize the path, magnitude and orientation of medial and lateral femorotibial contact forces using bone geometry constraints. The new method will be numerically compared to the known contact point method while estimating the muscle and contact forces for the stance phase of a single gait trial.

A single generic lower extremity model was modified to allow knee flexion with an instantaneous rotation center. The contact point method simulated medial and lateral contact forces with no limited magnitude and with predefined one-dimensional paths and orientations. The new contact zone method simulated contact forces with a limited magnitude and with two-dimensional paths and orientations constrained by the geometry of the bones. A high and low limit was used to study the effect of limiting the contact force magnitude on the predicted forces.

The paths of the contact forces for the contact zone method showed a difference up to 25.5 mm with respect to the contact point model. The contact zone method also allowed for more shear contact forces and for some modulation of the external frontal moment. Further limiting the contact force magnitude induced noticeable differences of muscle forces.

The contact zone method allows the path, magnitude and orientation of the femorotibial contact forces to be sensitive to knee bone geometries and to the amount of allowable joint contact force. Such a method is promising in characterizing the contact forces with modified gait, bone geometries and knee strength associated with pathological conditions such as osteoarthritic and ACL-deficiency.


Musculoskeletal modelling Femorotibial joint Contact forces Bone geometry Gait 



This work was founded by the Natural Sciences and Engineering Research Council of Canada (NSERC).


  1. 1.
    Lafortune, M.A., Cavanagh, P.R., Sommer, H.J. 3rd, Kalenak, A.: Three-dimensional kinematics of the human knee during walking. J. Biomech. 25(4), 347–357 (1992) CrossRefGoogle Scholar
  2. 2.
    Gerus, P., Sartori, M., Besier, T.F., Fregly, B.J., Delp, S.L., Banks, S.A., Pandy, M.G., D’Lima, D.D., Lloyd, D.G.: Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces. J. Biomech. 46(16), 2778–2786 (2013). doi: 10.1016/j.jbiomech.2013.09.005 CrossRefGoogle Scholar
  3. 3.
    Kumar, D., Manal, K.T., Rudolph, K.S.: Knee joint loading during gait in healthy controls and individuals with knee osteoarthritis. Osteoarthr. Cartil. 21(2), 298–305 (2013). doi: 10.1016/j.joca.2012.11.008 CrossRefGoogle Scholar
  4. 4.
    Manal, K., Buchanan, T.S.: An electromyogram-driven musculoskeletal model of the knee to predict in vivo joint contact forces during normal and novel gait patterns. J. Biomech. Eng. 135(2) (2013). doi: 10.1115/1.4023457
  5. 5.
    Winby, C.R., Lloyd, D.G., Besier, T.F., Kirk, T.B.: Muscle and external load contribution to knee joint contact loads during normal gait. J. Biomech. 42(14), 2294–2300 (2009). doi: 10.1016/j.jbiomech.2009.06.019 CrossRefGoogle Scholar
  6. 6.
    Lerner, Z.F., DeMers, M.S., Delp, S.L., Browning, R.C.: How tibiofemoral alignment and contact locations affect predictions of medial and lateral tibiofemoral contact forces. J. Biomech. 48(4), 644–650 (2015) CrossRefGoogle Scholar
  7. 7.
    Delp, S.L., Loan, J.P., Hoy, M.G., Zajac, F.E., Topp, E.L., Rosen, J.M.: An interactive graphics-based model of the lower extremity to study orthopaedic surgical procedures. IEEE Trans. Biomed. Eng. 37(8), 757–767 (1990). doi: 10.1109/10.102791 CrossRefGoogle Scholar
  8. 8.
    Shelburne, K.B., Torry, M.R., Pandy, M.G.: Muscle, ligament, and joint-contact forces at the knee during walking. Med. Sci. Sports Exerc. 37(11), 1948–1956 (2005) CrossRefGoogle Scholar
  9. 9.
    Shelburne, K.B., Torry, M.R., Pandy, M.G.: Contributions of muscles, ligaments, and the ground-reaction force to tibiofemoral joint loading during normal gait. J. Orthop. Res. 24(10), 1983–1990 (2006). doi: 10.1002/jor.20255 CrossRefGoogle Scholar
  10. 10.
    Wu, J.Z., Herzog, W., Epstein, M.: Joint contact mechanics in the early stages of osteoarthritis. Med. Eng. Phys. 22(1), 1–12 (2000) CrossRefGoogle Scholar
  11. 11.
    Lloyd, D.G., Besier, T.F.: An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. J. Biomech. 36(6), 765–776 (2003) CrossRefGoogle Scholar
  12. 12.
    Shelburne, K.B., Pandy, M.G., Anderson, F.C., Torry, M.R.: Pattern of anterior cruciate ligament force in normal walking. J. Biomech. 37(6), 797–805 (2004). doi: 10.1016/j.jbiomech.2003.10.010 CrossRefGoogle Scholar
  13. 13.
    Lin, Y.C., Walter, J.P., Banks, S.A., Pandy, M.G., Fregly, B.J.: Simultaneous prediction of muscle and contact forces in the knee during gait. J. Biomech. 43(5), 945–952 (2010). doi: 10.1016/j.jbiomech.2009.10.048 CrossRefGoogle Scholar
  14. 14.
    Dendorfer, S., Tørholm, S.: Report on the development of a new lower extremity model. AnyBody Technology, Aalborg University, Aalborg, Denmark, pp. 45 (2008) Google Scholar
  15. 15.
    Klein Horsman, M.D., Koopman, H.F., van der Helm, F.C., Prose, L.P., Veeger, H.E.: Morphological muscle and joint parameters for musculoskeletal modelling of the lower extremity. Clin. Biomech. 22(2), 239–247 (2007). doi: 10.1016/j.clinbiomech.2006.10.003 CrossRefGoogle Scholar
  16. 16.
    Nisell, R., Németh, G., Ohlsén, H.: Joint forces in extension of the knee: analysis of a mechanical model. Acta Orthop. Scand. 57(1), 41–46 (1986) CrossRefGoogle Scholar
  17. 17.
    Buckland-Wright, J.C., Macfarlane, D.G., Lynch, J.A., Jasani, M.K., Bradshaw, C.R.: Joint space width measures cartilage thickness in osteoarthritis of the knee: high resolution plain film and double contrast macroradiographic investigation. Ann. Rheum. Dis. 54(4), 263–268 (1995) CrossRefGoogle Scholar
  18. 18.
    Damsgaard, M., Rasmussen, J., Christensen, S.T., Surma, E., de Zee, M.: Analysis of musculoskeletal systems in the AnyBody Modeling System. Simul. Model. Pract. Theory 14(8), 1100–1111 (2006) CrossRefGoogle Scholar
  19. 19.
    Rasmussen, J., Damsgaard, M., Voigt, M.: Muscle recruitment by the min/max criterion – a comparative numerical study. J. Biomech. 34(3), 409–415 (2001) CrossRefGoogle Scholar
  20. 20.
    Rasmussen, J., Torholm, S., Damsgaard, M., De Zee, M.: The role of mechanics and optimization in ergonomics. In: 5th ASMO-UK/ISSMO Conference of Engineering Design Optimization. Stratford upon Avon, United Kingdom (2004) Google Scholar
  21. 21.
    Kutzner, I., Heinlein, B., Graichen, F., Bender, A., Rohlmann, A., Halder, A., Beier, A., Bergmann, G.: Loading of the knee joint during activities of daily living measured in vivo in five subjects. J. Biomech. 43(11), 2164–2173 (2010). doi: 10.1016/j.jbiomech.2010.03.046 CrossRefGoogle Scholar
  22. 22.
    Gander, W., Golub, G., Strebel, R.: Least-squares fitting of circles and ellipses. BIT Numer. Math. 34(4), 558–578 (1994). doi: 10.1007/BF01934268 MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Li, Q., Griffiths, J.G.: Least squares ellipsoid specific fitting. In: Proceedings of the Geometric Modeling and Processing, Beijing, China, April 13–15, 2004, pp. 335–340 (2004) Google Scholar
  24. 24.
    Ahmed, A.M., Burke, D.L.: In-vitro measurement of static pressure distribution in synovial joints – part I: tibial surface of the knee. J. Biomech. Eng. 105(3), 216–225 (1983) CrossRefGoogle Scholar
  25. 25.
    Gao, B., Zheng, N.: Alterations in three-dimensional joint kinematics of anterior cruciate ligament-deficient and -reconstructed knees during walking. Clin. Biomech. 25(3), 222–229 (2010). doi: 10.1016/j.clinbiomech.2009.11.006 CrossRefGoogle Scholar
  26. 26.
    Hubley-Kozey, C.L., Hill, N.A., Rutherford, D.J., Dunbar, M.J., Stanish, W.D.: Co-activation differences in lower limb muscles between asymptomatic controls and those with varying degrees of knee osteoarthritis during walking. Clin. Biomech. 24(5), 407–414 (2009). doi: 10.1016/j.clinbiomech.2009.02.005 CrossRefGoogle Scholar
  27. 27.
    Kim, H.J., Fernandez, J.W., Akbarshahi, M., Walter, J.P., Fregly, B.J., Pandy, M.G.: Evaluation of predicted knee-joint muscle forces during gait using an instrumented knee implant. J. Orthop. Res. 27(10), 1326–1331 (2009). doi: 10.1002/jor.20876 CrossRefGoogle Scholar
  28. 28.
    Lundberg, H.J., Foucher, K.C., Wimmer, M.A.: A parametric approach to numerical modeling of TKR contact forces. J. Biomech. 42(4), 541–545 (2009). doi: 10.1016/j.jbiomech.2008.11.030 CrossRefGoogle Scholar
  29. 29.
    Lundberg, H.J., Knowlton, C., Wimmer, M.A.: Fine tuning total knee replacement contact force prediction algorithms using blinded model validation. J. Biomech. Eng. 135(2) (2013). doi: 10.1115/1.4023388
  30. 30.
    Schipplein, O.D., Andriacchi, T.P.: Interaction between active and passive knee stabilizers during level walking. J. Orthop. Res. 9(1), 113–119 (1991). doi: 10.1002/jor.1100090114 CrossRefGoogle Scholar
  31. 31.
    Ackermann, M., van den Bogert, A.J.: Optimality principles for model-based prediction of human gait. J. Biomech. 43(6), 1055–1060 (2010). doi: 10.1016/j.jbiomech.2009.12.012 CrossRefGoogle Scholar
  32. 32.
    Prilutsky, B.I., Petrova, L.N., Raitsin, L.M.: Comparison of mechanical energy expenditure of joint moments and muscle forces during human locomotion. J. Biomech. 29(4), 405–415 (1996) CrossRefGoogle Scholar
  33. 33.
    Shelburne, K.B., Pandy, M.G., Torry, M.R.: Comparison of shear forces and ligament loading in the healthy and ACL-deficient knee during gait. J. Biomech. 37(3), 313–319 (2004). doi: 10.1016/j.jbiomech.2003.07.001 CrossRefGoogle Scholar
  34. 34.
    Lin, Y.C., Dorn, T.W., Schache, A.G., Pandy, M.G.: Comparison of different methods for estimating muscle forces in human movement. Proc. Inst. Mech. Eng., H J. Eng. Med. 226(2), 103–112 (2011). doi: 10.1177/0954411911429401 CrossRefGoogle Scholar
  35. 35.
    Kadaba, M.P., Ramakrishnan, H.K., Wootten, M.E., Gainey, J., Gorton, G., Cochran, G.V.: Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait. J. Orthop. Res. 7(6), 849–860 (1989). doi: 10.1002/jor.1100070611 CrossRefGoogle Scholar
  36. 36.
    Allard, P., Lachance, R., Aissaoui, R., Duhaime, M.: Simultaneous bilateral 3-D able-bodied gait. Hum. Mov. Sci. 15(3), 327–346 (1996). doi: 10.1016/0167-9457(96)00004-8 CrossRefGoogle Scholar
  37. 37.
    Trepczynski, A., Kutzner, I., Bergmann, G., Taylor, W., Heller, M.: Modulation of the relationship between external knee adduction moments and medial joint contact forces across subjects and activities. Arthritis Rheumatol. (2014). doi: 10.1002/art.38374 Google Scholar
  38. 38.
    Asfour, S., Eltoukhy, M.: Development and validation of a three-dimensional biomechanical model of the lower extremity. In: Klika, V. (ed.) Theoretical Biomechanics, pp. 161–186. InTech, Austria (2011) Google Scholar
  39. 39.
    Hubley-Kozey, C.L., Robbins, S.M., Rutherford, D.J., Stanish, W.D.: Reliability of surface electromyographic recordings during walking in individuals with knee osteoarthritis. J. Electromyogr. Kinesiol. 23(2), 334–341 (2013). doi: 10.1016/j.jelekin.2012.12.002 CrossRefGoogle Scholar
  40. 40.
    Andersen, M.S., Damsgaard, M., Rasmussen, J.: Kinematic analysis of over-determinate biomechanical systems. Comput. Methods Biomech. Biomed. Eng. 12(4), 371–384 (2009). doi: 10.1080/10255840802459412 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Laboratoire de recherche en imagerie et orthopédie (LIO)Centre de recherche du CHUM, Tour VigerMontréalCanada
  2. 2.Département de génie de la production automatisée (Bureau A-3643)École de technologie supérieureMontréalCanada

Personalised recommendations