Multibody System Dynamics

, Volume 39, Issue 1–2, pp 37–49 | Cite as

Transient simulation of friction-induced vibrations using an elastic multibody approach

  • Igor Iroz
  • Michael Hanss
  • Peter Eberhard


In this paper, by the use of elastic multibody dynamics and a master–slave contact approach with penalty formulation, computationally efficient time integrations of a brake system are performed for constant and time-dependent input parameters. As a result, the amplitudes of the friction-induced vibrations and the contact forces at the disc–pad interfaces are predicted. Besides, system outputs are viewed in phase diagrams, and the creation of a stable limit cycle for a low friction coefficient is identified. In this way, conclusions on the stability of the system are drawn, and statements based on frequency-domain analyses are complemented. Finally, a distinct need for a new criterion that quantifies the squeal propensity of such systems in the time domain is identified.


Elastic multibody system Self-excited vibration Friction-induced vibration Brake squeal Penalty formulation 



The authors would like to thank the organizers of the ECCOMAS Thematic Conference on Multibody Dynamics 2015 in Barcelona for the kind invitation to submit a reviewed and extended version of the proceedings contribution to this thematic issue.


  1. 1.
    Kinkaid, N.M., O’Reilly, O.M., Papadopoulos, P.: Automotive disc brake squeal. J. Sound Vib. 267(1), 105–166 (2003) CrossRefGoogle Scholar
  2. 2.
    Ouyang, H., Nack, W., Yuan, Y., Chen, F.: Numerical analysis of automotive disc brake squeal. Int. J. Veh. Noise Vib. 1, 207–231 (2005) CrossRefGoogle Scholar
  3. 3.
    des Vermot, Roches, G.: Frequency and time simulation of squeal instabilities – application to the design of industrial automotive brakes. Ph.D. thesis, École Centrale des Arts et Manufactures, Paris (2011) Google Scholar
  4. 4.
    Schiehlen, W., Eberhard, P.: Applied Dynamics. Springer, Heidelberg (2014) CrossRefzbMATHGoogle Scholar
  5. 5.
    Schwertassek, R., Wallrapp, O.: Dynamik flexibler Mehrkörpersysteme. Vieweg, Braunschweig (1999). (in German) CrossRefGoogle Scholar
  6. 6.
    Ziegler, P., Eberhard, P.: Investigations of gears using an elastic multibody model with contact. In: Blajer, W., Arczewski, K., Fraczek, J., Wojtyra, M. (eds.) Multibody Dynamics: Computational Methods and Applications, vol. 23, pp. 309–327. Springer, Dordrecht (2011) CrossRefGoogle Scholar
  7. 7.
    Mackey, D.S., Mackey, N., Mehl, C., Mehrmann, V.: Structured polynomial eigenvalue problems: good vibrations from good linearizations. SIAM J. Matrix Anal. Appl. 28(4), 1029–1051 (2006) MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Higham, N.J., Mackey, D.S., Mackey, N., Tisseur, F.: Symmetric linearizations for matrix polynomials. SIAM J. Matrix Anal. Appl. 29(1), 143–159 (2007) MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Campbell, W.: Protection of Steam Turbine Disk Wheels from Axial Vibration. General Electric Co., Schenectady (1924) Google Scholar
  10. 10.
    Soobbarayen, K., Sinou, J.J., Besset, S.: Numerical study of friction-induced instability and acoustic radiation – effect of ramp loading on the squeal propensity for a simplified brake model. J. Sound Vib. 333(21), 5475–5493 (2014) CrossRefGoogle Scholar
  11. 11.
    Olsson, H., Åström, K., Canudas de Wit, C., Gäfvert, M., Lischinsky, P.: Friction models and friction compensation. Eur. J. Control 4(3), 176–195 (1998) CrossRefzbMATHGoogle Scholar
  12. 12.
    Graf, M., Ostermeyer, G.P.: Instabilities in the sliding of continua with surface inertias: an initiation mechanism for brake noise. J. Sound Vib. 330(22), 5269–5279 (2011) CrossRefGoogle Scholar
  13. 13.
    Wriggers, P.: Computational Contact Mechanics. Wiley, Chichester (2002) zbMATHGoogle Scholar
  14. 14.
    Intes: Permas, Examples Manual, PERMAS Version 14.00.121, INTES Publication No. 550. Intes GmbH, Stuttgart (2012) Google Scholar
  15. 15.
    Oberst, S., Lai, J.: Nonlinear transient and chaotic interactions in disc brake squeal. J. Sound Vib. 342, 272–289 (2015) CrossRefGoogle Scholar
  16. 16.
    Holzwarth, P., Baumann, M., Volzer, T., Iroz, I., Bestle, P., Fehr, J.: Software Morembs (2015).
  17. 17.
    Tobias, C., Eberhard, P.: Stress recovery with Krylov-subspaces in reduced elastic multibody systems. Multibody Syst. Dyn. 25(4), 377–393 (2011) MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Holzwarth, P., Eberhard, P.: SVD-based improvements for component mode synthesis in elastic multibody systems. Eur. J. Mech. A, Solids 49, 408–418 (2015) MathSciNetCrossRefGoogle Scholar
  19. 19.
    Craig, R.: Coupling of substructures for dynamic analyses: an overview. In: Proceedings of the AIAA Dynamics Specialists Conference (2000) Google Scholar
  20. 20.
    Kurz, T., Burkhardt, M., Hofmann, A., Sperle, C.: Software Neweul-\(\mathrm{M}^{2}\) (2015). Google Scholar
  21. 21.
    Burkhardt, M., Seifried, R., Eberhard, P.: Aspects of symbolic formulations in flexible multibody systems. J. Comput. Nonlinear Dyn. 9(4), 041013 (2014) CrossRefGoogle Scholar
  22. 22.
    Welch, P.: The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. 15(2), 70–73 (1967) MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Institute of Engineering and Computational MechanicsUniversity of StuttgartStuttgartGermany

Personalised recommendations