Multibody System Dynamics

, Volume 37, Issue 1, pp 107–125 | Cite as

Convergence of generalized-\(\boldsymbol{\alpha}\) time integration for nonlinear systems with stiff potential forces

Article

Abstract

Generalized-\(\alpha\) time integration schemes, originally developed for application in structural dynamics, are increasingly popular throughout many branches of multibody system simulation. Their simple implementation and the opportunity to control the numerical dissipation make them highly appealing for use in broad fields of application.

Initially introduced for the solution of linear ordinary differential equations, there have been several extensions to nonlinear structural dynamics and constrained multibody systems in various formulations.

In the present paper, we consider the application to systems with very stiff potential forces (singular singularly perturbed systems) whose solution approaches in the limit case that of a constrained system (index-3 differential–algebraic equation). We give a convergence analysis comparing the highly oscillatory solutions of the stiff system to those of the associated constrained one and show that the classical second order convergence result holds for position coordinates as well as for appropriately projected errors on the velocity level.

The theoretical results are verified by numerical experiments for a simple test example.

Keywords

Generalized-\(\alpha\) method Stiff potential Highly oscillatory systems 

References

  1. 1.
    Arnold, M., Brüls, O.: Convergence of the generalized-\(\alpha\) scheme for constrained mechanical systems. Multibody Syst. Dyn. 18, 185–202 (2007). doi:10.1007/s11044-007-9084-0 MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Arnold, M., Brüls, O., Cardona, A.: Error analysis of generalized-\(\alpha\) Lie group time integration methods for constrained mechanical systems. Numer. Math. 129, 149–179 (2015). doi:10.1007/s00211-014-0633-1 MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Arnold, M., Cardona, A., Brüls, O.: A Lie algebra approach to Lie group time integration of constrained systems (2015). Submitted to: P. Betsch (ed.) Structure-Preserving Integrators in Nonlinear Structural Dynamics and Flexible Multibody Dynamics. CISM Courses and Lectures Google Scholar
  4. 4.
    Becker, U., Burger, M., Simeon, B.: On Rosenbrock methods for the time integration of nearly incompressible materials and their usage for nonlinear model reduction. J. Comput. Appl. Math. 262, 333–345 (2014). doi:10.1016/j.cam.2013.10.042 MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bornemann, F.: Homogenization in Time of Singularly Perturbed Mechanical Systems. Lecture Notes in Mathematics, vol. 1687. Springer, Berlin (1998) MATHGoogle Scholar
  6. 6.
    Brüls, O., Arnold, M.: The generalized-\(\alpha\) scheme as a multistep integrator: towards a general mechatronic simulator. In: Proc. of the IDETC/MSNDC Conference, Las Vegas, USA (2007). doi:10.1115/1.2960475 Google Scholar
  7. 7.
    Chung, J., Hulbert, G.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha\)-method. J. Appl. Mech. 60, 371–375 (1993). doi:10.1115/1.2900803 MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Deuflhard, P., Hairer, E., Zugck, J.: One-step and extrapolation methods for differential–algebraic systems. Numer. Math. 51, 501–516 (1987). doi:10.1007/BF01400352 MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Erlicher, S., Bonaventura, L., Bursi, O.: The analysis of the generalized-\(\alpha\) method for non-linear dynamic problems. Comput. Mech. 28, 83–104 (2002). doi:10.1007/s00466-001-0273-z MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Flores, P., Ambrósio, J., Claro, J.: Dynamic analysis of planar multibody mechanical systems with lubricated joints. Multibody Syst. Dyn. 12, 44–74 (2004). doi:10.1023/B:MUBO.0000042901.74498.3a CrossRefMATHGoogle Scholar
  11. 11.
    Hairer, G., Wanner, E.: Solving Ordinary Differential Equations. Part II—Stiff and Differential Algebraic Problems, 2nd edn. Springer, New York (2002) MATHGoogle Scholar
  12. 12.
    Hairer, E., Lubich, C., Roche, M.: The numerical solution of differential-algebraic systems by Runge–Kutta methods. Lecture Notes in Mathematics, vol. 1409. Springer, Berlin (1989) MATHGoogle Scholar
  13. 13.
    Hilber, H., Hughes, T.: Collocation, dissipation and ‘overshoot’ for time integration schemes in structural dynamics. Earthq. Eng. Struct. Dyn. 6, 99–117 (1978). doi:10.1002/eqe.4290060111 CrossRefGoogle Scholar
  14. 14.
    Hilber, H., Hughes, T., Taylor, R.: Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq. Eng. Struct. Dyn. 5, 99–118 (1977). doi:10.1002/eqe.4290050306 CrossRefGoogle Scholar
  15. 15.
    Jay, L.: Convergence of the generalized-\(\alpha\) method for constrained systems in mechanics with nonholonomic constraints. Tech. Rep. 181, University of Iowa (2011) Google Scholar
  16. 16.
    Jay, L., Negrut, D.: Extensions of the HHT-method to differential–algebraic equations in mechanics. Electron. Trans. Numer. Anal. 26, 190–208 (2007) MathSciNetMATHGoogle Scholar
  17. 17.
    Jay, L., Negrut, D.: A second order extension of the generalized-\(\alpha\) method for constrained systems in mechanics. In: Botasso, C. (ed.) Multibody Dynamics. Computational Methods and Applications. Computational Methods in Applied Sciences, vol. 12, pp. 143–158. Springer, Berlin (2008) CrossRefGoogle Scholar
  18. 18.
    Lötstedt, P.: On a penalty function method for the simulation of mechanical systems subject to constraints. Tech. Rep. TRITA-NA-7919, Dept. of Num. Anal. & Comp. Sci., Stockholm (1979) Google Scholar
  19. 19.
    Lubich, C.: Integration of stiff mechanical systems by Runge–Kutta methods. Z. Angew. Math. Phys. 44, 1022–1053 (1993). doi:10.1007/BF00942763 MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Lunk, C., Simeon, B.: Solving constrained mechanical systems by the family of Newmark and \(\alpha\)-methods. Z. Angew. Math. Mech. 86, 772–784 (2006). doi:10.1002/zamm.200610285 MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    O’Malley, R.: Singular Perturbation Methods for Ordinary Differential Equations. Springer, New York (1991) CrossRefMATHGoogle Scholar
  22. 22.
    Rheinboldt, W., Simeon, B.: Computing smooth solutions of DAEs for elastic multibody systems. Comput. Math. Appl. 37, 69–83 (1999). doi:10.1016/S0898-1221(99)00077-2 MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Rubin, H., Ungar, P.: Motion under a strong constraining force. Commun. Pure Appl. Math. 10, 65–87 (1957). doi:10.1002/cpa.3160100103 MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Schneider, S.: Convergence results for multistep Runge–Kutta methods on stiff mechanical systems. Numer. Math. 69, 495–508 (1995). doi:10.1007/s002110050105 MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Stumpp, T.: Asymptotic expansions and attractive invariant manifolds of strongly damped mechanical systems. Z. Angew. Math. Mech. 88, 630–643 (2008). doi:10.1002/zamm.200700057 MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Wood, W., Bossak, M., Zienkiewicz, O.: An alpha modification of Newmark’s method. Int. J. Numer. Methods Eng. 5, 1562–1566 (1981). doi:10.1002/nme.1620151011 MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Institute of MathematicsMartin Luther University Halle-WittenbergHalle (Saale)Germany

Personalised recommendations