Multibody System Dynamics

, Volume 35, Issue 3, pp 215–232 | Cite as

Dynamic considerations of heel-strike impact in human gait

  • Javier Ros
  • Josep M. Font-Llagunes
  • Aitor Plaza
  • József Kövecses


Based on the impulsive-dynamics formulation, this article presents the analysis of different strategies to regulate the energy dissipation at the heel-strike event in the context of human locomotion. For this purpose, a seven-link 2D human-like multibody model based on anthropometric data is used. The model captures the most relevant dynamic and energetic aspects of the heel-strike event in the sagittal plane. The pre-impact mechanical state of the system, around which the analysis of the heel impact contribution to energy dissipation is performed, is defined based on published data. In the context of the proposed impulsive-dynamics framework, different realistic strategies that the subject can apply to modify the impact dynamics are proposed and analyzed, namely, the trailing ankle push-off, the torso configuration and the degree of joint blocking in the colliding leg. Detailed numerical analysis and discussions are presented to quantify the effects of the mentioned strategies.


Biomechanics Bipedal walking Impact dynamics Energy analysis Human gait 



Javier Ros gratefully acknowledges the support received from the Spanish Ministry of Education under the “Salvador de Madariaga” fellowship #PR2009-0259 and from McGill University to enjoy a sabbatical research stay.


  1. 1.
    Mochon, S., McMahon, T.A.: Ballistic walking. J. Biomech. 13, 49–57 (1980) CrossRefGoogle Scholar
  2. 2.
    Mochon, S., McMahon, T.A.: Ballistic walking: an improved model. Math. Biosci. 52, 241–260 (1981) MathSciNetCrossRefGoogle Scholar
  3. 3.
    Perry, J., Burnfield, J.M.: Gait Analysis: Normal and Pathological Function, 2nd edn. SLACK Incorporated, Thorofare (2010) Google Scholar
  4. 4.
    Basmajian, J.V.: The human bicycle. In: Komi, P.V. (ed.) Biomechanics 5A. University Park Press, Baltimore (1976) Google Scholar
  5. 5.
    Alexander, R.M.: Simple models of human motion. Appl. Mech. Rev. 48, 461–469 (1995) CrossRefGoogle Scholar
  6. 6.
    Hürmüzlü, Y., Moskowitz, G.D.: Bipedal locomotion stabilized by impact and switching: I and II. Dyn. Stab. Syst. 2(2), 73–112 (1987) MATHCrossRefGoogle Scholar
  7. 7.
    Hürmüzlü, Y., Moskowitz, G.D.: The role of impact in the stability of bipedal locomotion. Int. J. Dyn. Syst. 1(3), 217–234 (1986) MATHCrossRefGoogle Scholar
  8. 8.
    Goswami, A., Espiau, B., Keramane, A.: Limit cycles and their stability in a passive bipedal gait. In: Proc. of the IEEE Conf. on Robot. and Automation, pp. 246–251 (1996) CrossRefGoogle Scholar
  9. 9.
    Garcia, M., Chatterjee, A., Ruina, A., Coleman, M.: The simplest walking model: stability, complexity and scaling. J. Biomech. Eng. 120(2), 281–288 (1998) CrossRefGoogle Scholar
  10. 10.
    Kuo, A.D., Donelan, J.M., Ruina, A.: Energetic consequences of walking like an inverted pendulum: step-to-step transitions. Exerc. Sport Sci. Rev. 33(2), 88–97 (2005) CrossRefGoogle Scholar
  11. 11.
    Kuo, A.D., Donelan, J.M.: Dynamic principles of gait and their clinical implications. Phys. Ther. 90(2), 157–176 (2010) CrossRefGoogle Scholar
  12. 12.
    Srinivasan, M., Ruina, A.: Computer optimization of a minimal biped model discovers walking and running. Nature 439(5), 72–75 (2006) CrossRefGoogle Scholar
  13. 13.
    Goswami, A., Thuilot, B., Espiau, B.: A study of the passive gait of a compass-like biped robot: symmetry and chaos. Int. J. Robot. Res. 17(12), 1282–1301 (1998) CrossRefGoogle Scholar
  14. 14.
    McGeer, T.: Passive dynamic walking. Int. J. Robot. Res. 9(2), 62–82 (1990) CrossRefGoogle Scholar
  15. 15.
    McGeer, T.: Passive walking with knees. In: Proceedings of the IEEE Int. Conference on Robotics and Automation, Los Alamitos, CA, USA, pp. 1640–1645 (1990) CrossRefGoogle Scholar
  16. 16.
    Donelan, J.M., Kram, R., Kuo, A.D.: Simultaneous positive and negative external mechanical work in human walking. J. Biomech. 35, 117–124 (2002) CrossRefGoogle Scholar
  17. 17.
    Font-Llagunes, J.M., Kövecses, J.: Efficient dynamic walking: design strategies to reduce energetic losses of a compass walker at heel strike. Mech. Based Des. Struct. Mach. 37(3), 259–282 (2009) CrossRefGoogle Scholar
  18. 18.
    Pain, M.T.G., Challis, J.H.: Soft tissue motion during impacts: their potential contributions to energy dissipation. J. Appl. Biomech. 18, 231–242 (2002) Google Scholar
  19. 19.
    Boyer, K.A., Nigg, B.M.: Muscle activity in the leg is tuned in response to impact force characteristics. J. Biomech. 37(10), 1583–1588 (2004) CrossRefGoogle Scholar
  20. 20.
    Boyer, K.A., Nigg, B.M.: Changes in muscle activity in response to different impact forces affect soft tissue compartment mechanical properties. J. Biomech. Eng. 129, 594–602 (2007) CrossRefGoogle Scholar
  21. 21.
    Lafortune, M.A., Hennig, E.M., Lake, M.J.: Dominant role of interface over knee angle for cushioning impact loading and regulating initial leg stiffness. J. Biomech. 29(12), 1523–1529 (1996) CrossRefGoogle Scholar
  22. 22.
    Murray, M.P., Drought, A.B., Kory, R.C.: Walking patterns of normal men. J. Bone Jt. Surg. Am. 46, 335–360 (1964) Google Scholar
  23. 23.
    Pars, L.A.: A Treatise on Analytical Dynamics. Heinemann, London (1965) MATHGoogle Scholar
  24. 24.
    Pfeiffer, F., Glocker, C.: Multibody Dynamics with Unilateral Contacts. Wiley, New York (1996) MATHCrossRefGoogle Scholar
  25. 25.
    Font-Llagunes, J.M., Kövecses, J., Pàmies-Vilà, R., Barjau, A.: Comparison of Impulsive and Compliant Contact Models for Impact Analysis in Biomechanical Multibody Systems. In: Proceedings, 1st Joint International Conference on Multibody System Dynamics, Lappeenranta, Finland (2010) Google Scholar
  26. 26.
    Font-Llagunes, B.A., Pàmies-Vilà, R., Kövecses, J.: Dynamic analysis of impact in swing-through crutch gait using impulsive and continuous contact models. Multibody Syst. Dyn. 28(3), 257–282 (2012) MathSciNetCrossRefGoogle Scholar
  27. 27.
    Dumas, R., Chèze, L., Verriest, J.-P.: Adjustments to McConville et al. and Young et al. body segment inertial parameters. J. Biomech. 40(3), 543–553 (2007) CrossRefGoogle Scholar
  28. 28.
    Ros, J., Gil, J., Zabalza, I.: 3D_Mec. An Application to Teach Mechanics. In: Proceedings of ASME, IDETC/CIE2005, Long Beach (CA), USA (2005) Google Scholar
  29. 29.
    Kövecses, J.: Dynamics of mechanical systems and the generalized free-body diagram–Part I: general formulation. ASME J. Appl. Mech. 75(6), 061012 (2008) CrossRefGoogle Scholar
  30. 30.
    Kövecses, J.: Dynamics of mechanical systems and the generalized free-body diagram–Part II: imposition of constraints. ASME J. Appl. Mech. 75(6), 061013 (2008) CrossRefGoogle Scholar
  31. 31.
    Font-Llagunes, J.M., Kövecses, J.: Dynamics and energetics of a class of bipedal walking systems. Mech. Mach. Theory 44(11), 1999–2019 (2009) MATHCrossRefGoogle Scholar
  32. 32.
    Modarres Najafabadi, S.A.: Dynamics modelling and analysis of impact in multibody systems. Ph.D. Thesis, Department of Mechanical Engineering, McGill University, Montreal QC, Canada (2008) Google Scholar
  33. 33.
    Kuo, A.D.: Energetics of actively powered locomotion using the simplest walking model. ASME J. Biomech. Eng. 124(2), 113–120 (2002) Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Javier Ros
    • 1
  • Josep M. Font-Llagunes
    • 2
  • Aitor Plaza
    • 1
  • József Kövecses
    • 3
  1. 1.Department of Mechanical EngineeringPublic University of NavarrePamplonaSpain
  2. 2.Department of Mechanical Engineering, and Biomedical Engineering Research CentreUniversitat Politècnica de CatalunyaBarcelonaSpain
  3. 3.Department of Mechanical Engineering, and Centre for Intelligent MachinesMcGill UniversityMontrealCanada

Personalised recommendations