A fast multi-obstacle muscle wrapping method using natural geodesic variations
- 472 Downloads
- 12 Citations
Abstract
Musculoskeletal simulation has become an essential tool for understanding human locomotion and movement disorders. Muscle-actuated simulations require methods that continuously compute musculotendon paths, their lengths, and their rates of length change to determine muscle forces, moment arms, and the resulting body and joint loads. Musculotendon paths are often modeled as locally length minimizing curves that wrap frictionlessly over moving obstacle surfaces representing bone and tissue. Biologically accurate wrapping surfaces are complex, and a single muscle path may wrap around many obstacles. However, state-of-the-art muscle wrapping methods are either limited to analytical results for a pair of simple surfaces, or they are computationally expensive. In this paper, we introduce the Natural Geodesic Variation (NGV) method for the fast and accurate computation of a musculotendon’s shortest path across an arbitrary number of general smooth wrapping surfaces, and an explicit formula for the path’s exact rate of length change. The total path is regarded as a concatenation of straight-line segments between local surface geodesics, where each geodesic is naturally parameterized by its starting point, direction, and length. The shortest path is computed by finding the root of a global path-error constraint equation that enforces that the geodesics connect collinearly with adjacent straight-line segments. High computational speed is achieved using Newton’s method to zero the path error, with an explicit, banded Jacobian that maps natural variations of the geodesic parameters to path-error variations. Three simulation benchmarks demonstrate that the NGV method computes high-precision solutions for path length and rate of length change, allows for wrapping over biologically accurate surfaces, and is capable of simulating muscle paths over hundreds of surfaces in real time. We thus believe the NGV method will facilitate the development of more accurate yet very efficient musculoskeletal models.
Keywords
Muscle wrapping Musculotendon path Shortest path Geodesic Geodesic variation Jacobi fieldNotes
Acknowledgements
The authors gratefully acknowledge the support of Leonidas Guibas, Adrian Butscher, and Justin Solomon when discussing Jacobi fields; Matthew Millard for his valuable feedback on the method, the manuscript and the figures; and Francisco Geu Flores for his support in benchmarking.
References
- 1.Arnold, A.S., Blemker, S.S., Delp, S.L.: Evaluation of a deformable musculoskeletal model for estimating muscle-tendon lengths during crouch gait. Ann. Biomed. Eng. 29, 263–274 (2001) CrossRefGoogle Scholar
- 2.Kerr, G.H., Selber, P.: Musculoskeletal aspects of cerebral palsy. J. Bone Jt. Surg.—Br. Vol. 85(2), 157–166 (2003) CrossRefGoogle Scholar
- 3.Arnold, A.S., Anderson, F.C., Pandy, M.G., Delp, S.L.: Muscular contributions to hip and knee extension during the single limb stance phase of normal gait: a framework for investigating the causes of crouch gait. J. Biomech. 38, 2181–2189 (2005) CrossRefGoogle Scholar
- 4.Hicks, J.L., Schwartz, M.H., Arnold, A.S., Delp, S.L.: Crouched postures reduce the capacity of muscles to extend the hip and knee during the single-limb stance phase of gait. J. Biomech. 41, 960–967 (2008) CrossRefGoogle Scholar
- 5.Steele, K.M., Seth, A., Hicks, J.L., Schwartz, M.S., Delp, S.L.: Muscle contributions to support and progression during single-limb stance in crouch gait. J. Biomech. 43, 2099–2105 (2010) CrossRefGoogle Scholar
- 6.Neptune, R.R., Kautz, S.A., Zajac, F.E.: Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. J. Biomech. 34, 1387–1398 (2001) CrossRefGoogle Scholar
- 7.Zajac, F.E., Neptune, R.R., Kautz, S.A.: Biomechanics and muscle coordination of human walking. Part 1: introduction to concepts, power transfer, dynamics and simulations. Gait Posture 16, 215–232 (2002) CrossRefGoogle Scholar
- 8.Zajac, F.E., Neptune, R.R., Kautz, S.A.: Biomechanics and muscle coordination of human walking. Part 2: lessons from dynamical simulations and clinical implications. Gait Posture 17, 1–17 (2003) CrossRefGoogle Scholar
- 9.Liu, M.Q., Anderson, F.C., Pandy, M.G., Delp, S.L.: Muscles that support the body also modulate forward progression during walking. J. Biomech. 39, 2623–2630 (2006) CrossRefGoogle Scholar
- 10.van der Krogt, M.M., Delp, S.L., Schwartz, M.H.: How robust is human gait to muscle weakness? Gait Posture 36, 113–119 (2012) CrossRefGoogle Scholar
- 11.Neptune, R.R., Sasaki, K.: Ankle plantar flexor force production is an important determinant of the preferred walk-to-run transition speed. J. Exp. Biol. 208, 799–808 (2005) CrossRefGoogle Scholar
- 12.Hamner, S.R., Seth, A., Delp, S.L.: Muscle contributions to propulsion and support during running. J. Biomech. 43, 2709–2716 (2010) CrossRefGoogle Scholar
- 13.van der Helm, F.C.T.: The shoulder mechanism: a dynamic approach. Ph.D. Thesis. Delft University of Technology (1991) Google Scholar
- 14.Yu, J., Ackland, D.C., Pandy, M.G.: Shoulder muscle function depends on elbow joint position: an illustration of dynamic coupling in the upper limb. J. Biomech. 44, 1859–1868 (2011) CrossRefGoogle Scholar
- 15.Sasaki, K., Neptune, R.R.: Individual muscle contributions to the axial knee joint contact force during normal walking. J. Biomech. 43, 2780–2784 (2010) CrossRefGoogle Scholar
- 16.Lin, Y.-C., Walter, J.P., Banks, S.A., Pandy, M.G., Fregly, B.J.: Simultaneous prediction of muscle and contact forces in the knee during gait. J. Biomech. 43, 945–952 (2010) CrossRefGoogle Scholar
- 17.Winby, C.R., Lloyd, D.G., Besier, T.F., Kirk, T.B.: Muscle and external load contribution to knee joint contact loads during normal gait. J. Biomech. 42, 2294–2300 (2009) CrossRefGoogle Scholar
- 18.Moissenet, F., Chèze, L., Dumas, R.: A 3D lower limb musculoskeletal model for simultaneous estimation of musculo-tendon, joint contact, ligament and bone forces during gait. J. Biomech. (2013) Google Scholar
- 19.Giat, Y., Mizrahl, J., Levine, W.S., Chen, J.: Simulation of distal tendon transfer of the biceps brachii and the brachialis muscles. J. Biomech. 27(8), 1005–1014 (1994) CrossRefGoogle Scholar
- 20.Hill, A.V.: The mechanics of active muscle. Proc. - Royal Soc., Biol. Sci. 141, 104–117 (1953) CrossRefGoogle Scholar
- 21.Gordon, A.M., Huxley, A.F., Julian, F.J.: The variation in isometric tension with sarcomere length in vertebrae muscle fibers. J. Physiol. 184, 170–192 (1966) CrossRefGoogle Scholar
- 22.Bahler, A.S., Fales, J.T., Zierler, K.L.: The dynamic properties of mammalian skeletal muscle. J. Gen. Physiol. 51, 369–384 (1968) CrossRefGoogle Scholar
- 23.Zajac, F.E.: Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17(4), 359–411 (1989) Google Scholar
- 24.Millard, M., Uchida, T., Seth, A., Delp, S.L.: Flexing computational muscle: modeling and simulation of musculotendon dynamics. J. Biomech. Eng. 135, 021004-1–021004-11 (2013) Google Scholar
- 25.Brand, R.A., Crowninshield, R.D., Wittstock, C.E., Pedersen, D.R., Clark, C.R., van Krieken, F.M.: A model of lower extremity muscular anatomy. J. Biomech. Eng. 104(4), 304–310 (1982) CrossRefGoogle Scholar
- 26.Ackland, D.C., Pandy, M.G.: Lines of action and stabilizing potential of the shoulder musculature. J. Anat. 215, 184–197 (2009) CrossRefGoogle Scholar
- 27.Blemker, S.S., Asakawa, D.S., Gold, G.E., Delp, S.L.: Image-based musculoskeletal modeling: applications, advances, and future opportunities. J. Magn. Reson. Imaging 25, 441–451 (2007) CrossRefGoogle Scholar
- 28.Webb, J.D., Blemker, S.S., Delp, S.L.: 3D finite element models of shoulder muscles for computing lines of actions and moment arms. Comput. Methods Biomech. Biomed. Engin., 1–9 (2012) Google Scholar
- 29.An, K.-A., Berglund, L., Cooney, W.P., Chao, E.Y.S., Kovacevic, N.: Direct in vivo tendon force measurement system. J. Biomech. 23(12), 1269–1271 (1990) CrossRefGoogle Scholar
- 30.Schuind, F., Garcia-Elias, M., Cooney, W.P. III, An, K.-N.: Flexor tendon forces: in vivo measurements. J. Hand Surg. 17(2), 291–298 (1992) CrossRefGoogle Scholar
- 31.Garner, B.A., Pandy, M.G.: The obstacle-set method for representing muscle paths in musculoskeletal simulations. Comput. Methods Biomech. Biomed. Eng. 3, 1–30 (1999) CrossRefGoogle Scholar
- 32.Charlton, I.W., Johnson, G.R.: Application of spherical and cylindrical wrapping algorithms in a musculoskeletal model of the upper limb. J. Biomech. 34, 1209–1216 (2001) CrossRefGoogle Scholar
- 33.Gao, F., Damsgaard, M., Rasmussen, J., Christensen, S.T.: Computational method for muscle-path representation in musculoskeletal models. Biol. Cybern. 87, 199–210 (2002) CrossRefzbMATHGoogle Scholar
- 34.Marai, G.E., Laidlaw, D.H., Demiralp, C., Andrews, S., Grimm, C.M., Crisco, J.J.: Estimating joint contact areas and ligaments lengths from bone kinematics and surfaces. IEEE Trans. Biomed. Eng. 51(5), 790–799 (2004) CrossRefGoogle Scholar
- 35.Carman, A.B., Milburn, P.D.: Dynamic coordinate data for describing muscle-tendon paths: a mathematical approach. J. Biomech. 38, 943–951 (2005) CrossRefGoogle Scholar
- 36.Blemker, S.S., Delp, S.L.: Rectus femoris and vastus intermedius fiber excursions predicted by three-dimensional muscle models. J. Biomech. 39, 1383–1391 (2006) CrossRefGoogle Scholar
- 37.Marsden, S.P., Swailes, D.C., Johnson, G.R.: Algorithms for exact multi-object muscle wrapping and application to the deltoid muscle wrapping around the humerus. Proc. Inst. Mech. Eng., H J. Eng. Med. 222(7), 1081–1095 (2008) CrossRefGoogle Scholar
- 38.Röhrle, O., Davidson, J.B., Pullan, A.J.: Bridging scales: a three-dimensional electromechanical finite element model of skeletal muscle. SIAM J. Sci. Comput. 30(6), 2882–2904 (2008) MathSciNetCrossRefzbMATHGoogle Scholar
- 39.Audenaert, A., Audenaert, E.: Global optimization method for combined spherical-cylindrical wrapping in musculoskeletal upper limb modeling. Comput. Methods Programs Biomed. 92, 8–19 (2008) CrossRefGoogle Scholar
- 40.Gatti, C.J., Hughes, R.E.: Optimization of muscle wrapping objects using simulated annealing. Ann. Biomed. Eng. 37(7), 1342–1347 (2009) CrossRefGoogle Scholar
- 41.Vasavada, A.N., Lasher, R.A., Meyer, T.E., Lin, D.C.: Defining and evaluating wrapping surfaces for MRI-derived spinal muscle paths. J. Biomech. 41, 1450–1457 (2008) CrossRefGoogle Scholar
- 42.Arnold, E.M., Ward, S.R., Lieber, R.L., Delp, S.L.: A model of the lower limb for analysis of human movement. Ann. Biomed. Eng. 38(2), 269–279 (2010) CrossRefGoogle Scholar
- 43.Esat, I.I., Ozada, N.: Articular human joint modeling. Robotica 28, 321–339 (2010) CrossRefGoogle Scholar
- 44.Favre, P., Gerber, C., Snedeker, J.G.: Automated muscle wrapping using finite element detection. J. Biomech. 43, 1931–1940 (2010) CrossRefGoogle Scholar
- 45.Spyrou, L.A., Aravas, N.: Muscle-driven finite element simulation of human foot movements. Comput. Methods Biomech. Biomed. Eng. 5(9), 925–934 (2012) CrossRefGoogle Scholar
- 46.Stavness, I., Sherman, M., Delp, S.L.: A general approach to muscle wrapping over multiple surfaces. Florida, USA, 2012. Proc. Amer. Soc. Biomech. (2012) Google Scholar
- 47.Scholz, A., Stavness, I., Sherman, M., Delp, S.L., Kecskeméthy, A.: Improved muscle wrapping algorithms using explicit path-error Jacobians. Barcelona, Spain, 2012. Comput. Kinematics. (2012) Google Scholar
- 48.Desailly, E., Sardain, P., Khouri, N., Yepremian, D., Lacouture, P.: The convex wrapping algorithm: a method for identifying muscle paths using the underlying bone mesh. J. Biomech. 43, 2601–2607 (2010) CrossRefGoogle Scholar
- 49.Struik, D.J.: Lectures on Classical Differential Geometry. Dover, New York (1988) zbMATHGoogle Scholar
- 50.Strubecker, K.: Differentialgeometrie Band 3: Theorie der Flächenkrümmung. de Gruyter, Berlin (1969) Google Scholar
- 51.do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice Hall, New York (1976) zbMATHGoogle Scholar
- 52.Pressley, A.: Elementary Differential Geometry. Springer, Berlin (2010) CrossRefzbMATHGoogle Scholar
- 53.do Carmo, M.P.: Riemannian Geometry. Birkhäuser, Basel (1993) Google Scholar
- 54.Strubecker, K.: Differentialgeometrie Band 2: Theorie der Flächenmetrik. de Gruyter, Berlin (1969) Google Scholar
- 55.Kecskeméthy, A., Hiller, M.: An object-oriented approach for an effective formulation of multibody dynamics. Comput. Methods Appl. Math. 115(3–4), 287–314 (1994) Google Scholar
- 56.Pai, D.K.: Muscle mass in musculoskeletal models. J. Biomech. 43(11), 2093–2098 (2010) MathSciNetCrossRefGoogle Scholar