Multibody System Dynamics

, Volume 34, Issue 3, pp 243–257 | Cite as

Validation of a squeeze-film-damper test rig by using multibody cosimulation

Original Article


Squeeze-film dampers (SFD) are applied to provide damping at the outer ring of ball bearings used in jet engines. The main functions are to cap rotor oscillations and to reduce dynamic forces. A new test rig was designed to allow an orbital motion of the rotor shaft excited by two independently controllable electromagnetic shakers.

In order to achieve this excitation, the two shakers are rigidly coupled together; due to this, a degree of freedom is missing in this mechanism. The precisely adjusted stiffness of the coupling elements acts as a solid joint to provide the missing DOF. The resulting shear forces acting on the opposite shaker are supported by a support structure, designed as part of the coupling elements. A multibody cosimulation and several other virtual studies are performed to verify and validate the dynamic behavior of the test rig.

The SFD behavior cannot be implemented in the cosimulation by using a standard library damping element of the simulation tools because its behavior is nonlinear due to its design and functionality. It is implemented according to its valid theory, based on Reynolds equations for plain bearings.

The calculation of the multibody physics takes place in MSC Adams, whereas the theory of the SFD is described and implemented as a mathematical model in MATLAB/Simu link. A both-ends-against-the-middle approach is realized and discussed.


Multibody simulation Flexible bodies Cosimulation Both-ends-against-the-middle Validation Squeeze-film damper 


  1. 1.
    Albers, A., Jäger, S., Blutke, R.: Validierung eines Prüfstandes für Quetschöldämpfer mittels rechnerbasierter Methoden. In: Schwingungsdämpfung 2011. VDI-Verlag, Düsseldorf (2011)Google Scholar
  2. 2.
    Albers, A., Jäger, S., Hessenauer, B.: Rechnergestützte Entwicklung hochdynamisch belasteter Prüfstandskomponenten (2010)Google Scholar
  3. 3.
    Amirouche, F.M.L.: Fundamentals of Multibody Dynamics: Theory and Applications. Birkhäuser, Boston (2006)Google Scholar
  4. 4.
    ANSYS Inc.: ANSYS mechanical APDL analysis techniques guide (2010)Google Scholar
  5. 5.
    Cambridge University Press: Cambridge Idioms Dictionary 2nd edn. Cambridge University Press, Cambridge (2006)Google Scholar
  6. 6.
    Düser, T.: X-in-the-loop—an integrated validation framework for vehicle development using powertrain functions and driver assistance systems. Dissertation, Universität Karlsruhe, Institut für Produktentwicklung (2010)Google Scholar
  7. 7.
    Gasch, R., Nordmann, R., Pfützner, H.: Rotordynamik. Springer, Berlin (2002)CrossRefGoogle Scholar
  8. 8.
    Geier, M., Stier, C., Düser, T., Behrendt, M., Ott, S., Albers, A.: Simulationsgestützte Methoden – IDE und XiL zur Entwicklung von Antriebsstrangkomponenten. ATZ, Automobiltech. Z. 14(4), 48–53 (2009)Google Scholar
  9. 9.
    Jäger, S., Albert, A., Klingsporn, M., Blutke, R.: Study of the tribological contacts of a piston ring in a squeeze film damper. Seal. Technol. 2012(10), 5–6 (2012)Google Scholar
  10. 10.
    Jäger, S., Bruchmüller, T., Albers, A.: Dynamic behaviour and sealing performance of piston rings used in squeeze-film-dampers. Seal. Technol. 2012(11), 9–13 (2012). doi:10.1016/S1350-4789(12)70485-3 CrossRefGoogle Scholar
  11. 11.
    Kim, C., Jung, Y., Cho, S., Jung, H.: Vibration control simulation for a multi-body high speed flexible rotor model using a phase adjusting method. In: ICROS-SICE International Joint Conference, Japan, (2009)Google Scholar
  12. 12.
    Lobontiu, N.: Compliant Mechanisms: Design of Flexure Hinges. CRC Press, Boca Raton (2003)Google Scholar
  13. 13.
    San Andres, L.: Squeeze film dampers: operation, models and technical issues (2010)Google Scholar
  14. 14.
    Schiehlen, W.: Research trends in multibody system dynamics. Multibody Syst. Dyn. 18, 3–13 (2007)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Zhu, C., Liu, Y., Cai, G., Zhu, L.: Dynamics simulation analysis of flexible multibody of parallel robot. Appl. Mech. Mater. 10–12, 647–651 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.OPVengineering GmbHc/o Karlsruher Institute of Technology (KIT)KarlsruheGermany
  2. 2.IPEK – Institute of Product EngineeringKarlsruher Institute of Technology (KIT)KarlsruheGermany

Personalised recommendations